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THEORETICAL STUDY OF CORRUGATED PLATES:
SHEARING OF A TRAPEZOIDALLY CORRUGATED PLATE WITH

TROUGH LINES HELD STRAIGHT

By Chuan-jui Lin* and Charles Libove*¥*

Syracuse University
SUMMARY

A theoretical analysis is presented of the elastic shearing of a trape-
zoldally corrugated plate with discontinuous attachment at the ends of the
corrugations and with trough lines constrained to remain straight. Numerical
results on effective shearing stiffness, stresses, and displacements are
presented for selected geometries and end-attachment conditions. It is shown
that the frame-like deformations of the cross sections, which result from the
absence of continuous end attachment, can lead to large transverse bending
stresses and large reductions in shearing stiffness. Some suggestions are
made for reducing these effects.

INTRODUCTION

In this report a theoretical study is made of the elastic shearing of a
trapezoidally corrugated plate for the purpose of determining the effective
shearing stiffness, the deformations and the stresses. The configuration of
the plate is shown in figure 1, which also gives some of the notation to be
employed.

The trough lines (mn in fig. 1(b)) are assumed to be held straight, and
the shearing of the plate is accomplished by shifting them longitudinally
with respect to each-other so as to produce the same over-all shearing strain
in each corrugation. The assumed straightness of the trough lines corresponds
to the case in which the corrugated plate is attached to a flat plate or some
other structure along the trough lines; the analysis is therefore only approxi-
mately applicable to the case of a corrugated plate by itself. 1In the latter
case the trough lines will tend to curve in the horizontal (xz) plane.

*NDEA Fellow

**Professor of Mechanical and Aerospace Engineering



In the analysis two kinds of conditions are assumed along the trough
lines: either complete freedom of rotation or complete suppression of
rotation, representing two limiting assumptions for the degree of
rotational restraint furnished by the medium to which the trough lines
might be attached. These two kinds of conditions are shown schematically
in figure 2. No other kind of interference is assumed to be present,
along the length of the trough lines, between the corrugated plate and
the medium to which it is attached.

The analysis encompasses three kinds of conditions at the ends of
the plate (z = + b). These are illustrated in figure 3 and may be
described as follows:

(1) Attachments at the ends of the trough lines only (fig.
3(a)), the attachments being considered as mathematical
points, offering restraint against displacement but not
against rotation.

(ii) Attachments at the ends of both the trough lines and the
crest lines (fig. 3(b)), the attachments again considered
as points.

(iii) Very wide attachments at the ends of the trough lines
only, as shown in figure 3(c). This type of attachment
1s approximated in the analysis by means of the
idealization shown in figure 3(d), i.e. by adding, to
the end constraints of figure 3(a), end constraints
against vertical displacement (but not against longitudinal
displacement) at the junctions of the trough plate element
and the adjacent inclined plate elements.

Attachment (iii) also represents an over-estimate of the constraint afforded
by interference between the end of the corrugation and the member to which
the end of the corrugation is attached. The interference referred to can be
seen in the photograph in figure 5 (taken from ref. 1).

Numerical results on shearing stiffness, stresses and deformations for
selected geometries are presented and discussed. In the numerical work, only
the case of no rotational restraint along the trough lines (fig. 2(a)) is
considered. All three of the end conditions shown in figure 3 are considered
for the calculations of shearing stiffness, but only the end conditions of
figure 3(a) for the calculations of stresses and deformationms.

The prediction of the present theory with regard to shearing stiffness
is compared with the result of an experiment reported in reference 2, and
good agreement is found.
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SYMBOLS

coefficients in equatibn for ul(z) (see eq. (C30))
defined by equations (Al0)

defined by equations (D34); used in equation (D33)
coefficients in equations (31) to (34) for displace-
ments; obtained by solving equations (C33), (C38)

or (C38'), depending on the type of end attachments
defined by equations (50) .
defined by equations (D8)

defined by equations (E26); used in equations (E25)
defined by equations (62)

coefficients in expression for U, (see eqs. (14)
and (15))

defined by equation (C7)

defined by equation (Cl2)

defined by equations (Cl3)

defined by equatiomns (D7)

defined by equation (D15)

defined by equation (D24)

defined by equation (E7a) or (E7b), depending on
the kind of rotational restraint along the trough
lines

defined by equation (E19a) or (E19b), depending

on the kind of rotational restraint along the
trough lines
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obtained by solving equations (C24)
one~half the length of the corrugations (see fig. 1(b))
defined by equations (62)

coefficients in expression for Uex (see eqs. (3) and

) ¢
defined by equation (C7)

defined by equation (Cl12)
defined by equations (C13)
obtained by solving equations (C24)

coefficients in expression for Ush (see eqs. (7) and

(8) )

coefficients in serles expansion for R (see eqs. (28)
and (C21) )

defined by equation (C7)
defined by equation (Cl2)
defined by equations (Cl13)

defined by equatiomns (C35)

frame flexural stiffness; usually defined by equation
(16b)

obtained by solving equations (C24)

coefficients in expression for Ush (see eqs. (7)
and (8) )

defined by equations (Cl13)
defined by equation (C37)

Young's modulus associated with frame bending of the
cross sections

Young's modulus associated with longitudinal extension
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one-half the width of the trough plate element
(see fig. 1(a))

coefficients in expression for U_, (see eqs. (7)
sh
and (8))

coefficients in expression for U__ (see eqs. (12)
tw
and (13))

defined by equations (B2)
defined by equation (C7)
defined by equations (Cl2)
defined by equations (Cl13)
defined by equations (C13)
defined by equation (C37)
defined by equations (D6)
defined by equations (D10)
defined by equation (D15)
defined by equation (D24)
shear force (see fig. 1(b))
shear force associated with y' (see eq. (38))
cross—-sectional shear force resultants in plate
elements 01, 12, 23 respectively (see fig. 9(a)
and eq. (B15))

width of the crest plate element (see fig. 1(a))
functions of z defined by equations (51)
functions of z défined by equations (52)
defined by equation (C7)

defined by equation (Cl2)

shear modulus associated with middle surface shear
of the plate elements

shear modulus associated with torsion of the plate
elements

effective shear modulus of corrugated plate, Tav/Yav

defined by equations (61)
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defined by equation (C7)
defined by equation (C12)
height of corrugation (see fig. 1(a))
defined by equation (C7)

defined by equation (Cl2)

torsion constants of plate elements 01, 12, 23
respectively (see eqs. (10))

defined by equation (C7)
defined by equation (C12)
defined by equation (66)
width of the inclined plate element (see fig. 1(a))

coefficients of characteristic equation (C8) for r;
defined by equations (C9)

defined by equatioms (C1l1l)

defined by equation (C7)

defined by equations (C1l2)

defined by equations (D23)

defined by equations (E18)

defined by equations (C25)

frame bending moments per unit length of corrugation
frame bending moments, per unit length of

corrugation, at junctions @ , @ , @
respectively (see fig. 8)

defined by equation (C7)

defined by equations (Cl2)
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defined by equations (C34)

defined by equations (C34)

defined by equation (C39)

defined by equations (C39)

defined by equations (C39'")

real numbers defined by equations (C29) and (C27)
defined by equations (D35)

defined by equations (D35)

pitch of corrugation (see fig. 1(a))

developed width of one corrugation (2e + £ + 2k)

coefficients in series expansion for R (see eqs. (30)
and (C20))

coefficients in series expansion for X (see egs.
(D26) and (D28)

coefficients in series expansion for X (see eqgs.
(E21); defined by equations (D28) with all tildes
(") replaced by circumflex accents (°)

real numbers defined by equations (C29) and (C27)
defined by equations (E27)

defined by equations (E27)

coefficients in series expansion for R (see egqs. (29)
and (C19)

coefficients in series expansion for Y (see egs.

(D26) and (D27))

coefficients in series expansion for X (see eq. (E21));
defined by equations (D27) with all tildes (~) replaced
by circumflex accents (")

variable in characteristic equation (26)

roots of characteristic equation (26)

effective cross-sectional shear force resultants for
plate elements 01, 12, 23 respectively (see fig. 9(d)
and eq. (B16))

variable in characteristic equation (D21)
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roots of characteristic equation (D21)

variable in characteristic equation (E16)

roots of characteristic equation (E16)

G=1, 2, ..., 8

transverse coordinates along the cross-sectional
centerline (see fig. 4(a))

defined by equations (C35)

real numbers defined by equations (C29) and (C27)

defined by equations (53)

torques carried by plate elements 01, 12, 23 .
respectively

total potential energy of a single corrugation
(see eq. (18))

real numbers defined by equations (C29) and (C27)
thickness of corrugation (see fig. 1(a))

strain energy of an entire corrugation (see eq. (17));
also real part of Ry and Ry and negative of real part

of Ry and R4 (see eqgqs. (27))

strain energy per unit length of corrugation
associated with frame bending of the cross sections

strain energy per unit length of corrugation
associated with longitudinal extension

strain energy per unit length of corrugation
associated with middle surface shear

strain energy per unit length of corrugation
associated with torsion



1 1
Vis Yy

Vir ¥

Wk X b X =]

4>

Y1 Yos Y3

longitudinal displacement

one-half the relative shearing displacement of two
adjacent trough lines (see fig. 4(b))

longitudinal displacement (function of z) along
junction (:) (see fig. 4)

longitudinal displacement (function of z) along
junction (:) (see fig. 4)

imaginary part of R; and R3, negative of imaginary
part of Ry and R, (see egs. (27))

functions of z defined by equations (54) and (55)
amplitudes'of component modes of displacement in the
plane of the cross sections (functions of z) (see
fig. 4(c))

function of z defined by equation (D43)

function of z defined by equation (E36)

real number equal to R5 and -R6 (see eqs. (27))
real number equal to il and -§2 (see eqs. (D25))
real number equal to ﬁl and ~ﬁ2 (see eqs. (E20))
transverse coordinate (see fig. 1 (b))

real number equal to R7 and --R8 (see eqs. (27))
real number equal to i3 and —i4 (see eqs. (D25))
real number equal to §3 and —ﬁA (see egs. (E20))
longitudinal coordinate (see fig. 1(b))

numerical constant having the value 0 if the trough
lines are free to rotate and 1 if they are prevented
from rotating

defined by equations (C36)

defined by equation (A8)

defined by equations (C36)

defined by equation (D8a)

shear strain

shear strain in plate elements 01, 12, 23
respectively
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defined by equations (D31)
uniform shear strain in corrugated sheet corresponding

to relative shearing displacement 2u0 of adjacent
trough lines (see eq. (37))

defined by equations (E24)

computed from equation (C27); representable by
equations (C29)

functions of vy and v, defined in table Al
longitudinal strain

longitudinal strain in plate elements 01, 12, 23
respectively

defined by equations (C2)

angle between sides of corrugation and horizontal
(see fig. 1)

angles of rotation of junctions C) and ()
respectively (see fig. 6)

Poisson's ratio, taken as 0.3 for numerical work
cross-sectional normal stress

cross—-sectional normal stress in plate elements 01,
12, 23 respectively

cross-sectional normal stress (functions of z)
along junctions @ and @ (see fig. 4(a))

extreme—fiber bending stress (functions of z) at
junctions C) , (D s () respectively, resulting
from frame bending of the cross sections (see fig.
18)

middle-surface shear stress

middle-surface shear stress in plate elements 01,
12, 23 respectively

average longitudinal shear stress, F/2bt
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extreme-fiber shear stresses due to twisting of
the plate elements 01, 12, 23 respectively (see
fig. 18)

1 1 1
To1> T12° T23

middle~surface shear stresses in plate elements

Tass Tans T
01* "12° 23 01, ‘12, 23 respectively (see fig. 18)

¢ rate of twist
¢1, ¢2, ¢3 rate of twist of plate elements 01, 12, 23 respectively
1] factor in equation (35) for shear stiffness; defined

by equation (36)

¥ factor in equation (D37) for shear stiffness;
defined by equation (D38)

] factor in equatidn (E28) for shear stiffness;
defined by equation (E29)

Q relative shearing stiffness, i.e. shear stiffness of
actual corrugation divided by shear stiffness of an
identical corrugation with continuous end attachment
producing uniform shearing strain in the sheet

Q' another relative shearing stiffness, defined as the
shear stiffness of the actual corrugation to that of
a uniformly sheared flat plate of the same thickness
and length and width equal to p.

SJ)

defined by equation (69)
ANALYSIS

Since all corrugations are assumed to deform identically, the analysis is
based on a single corrugation, i.e. on the portion of the plate between two
neighboring trough lines. This corrugation can be regarded as an assemblage
of rigidly joined flat-plate elements and can therefore be analyzed by applying
flat-plate theory and continuity conditions to these elements. An analysis on
this basis, however, can be complicated; therefore in the present paper certain
simplifying assumptions are made and a solution effected by means of the method
of minimum total potential energy.

Assumption regarding longitudinal displacements. - Figure 4(a) shows a
cross section of the middle surface of a single corrugation. The shearing of
this corrugation is assumed to be effected by a rigid-body shift of the trough

"line at station C) through a distance uYg 3Iin the positive-z direction and a
rigid-body shift of the trough line at station (:) through the same distance in
the negative-z direction. Thus the total shearing displacement of one trough
line with respect to the other is 2u0 .

The longitudinal displacements of other points of the cross sectlon are
assumed to vary linearly between stations. These longitudinal displacements
are shown in the plan view (fig. 4(b)), which also shows their antisymmetrical

N



nature resulting from the antisymmetrical nature of the imposed displacements
of the two trough lines. Thus the longitudinal displacements of all middle-
surface points are defined by one prescribed parameter, u; , and two unknown
functions of z: wuy(z) and uy(z) . If, as is donme subsequently, the shearing
force F (see fig. 1(b)) is regarded as prescribed, rather than the shearing
displacement uy , the latter will become an additional unknown.

Assumptions regarding displacements in the plane of the cross section. —
The cross sections, especially those near the ends, can be expected to undergo
significant flexural deformation in their own planes, somewhat in the manner of
a rigid-jointed frame. Figure 5, taken from reference 1, shows such deformations
in a particular experiment.*

As is done in frame analysis, the deformation of a cross section in its own
plane will be assumed to be inextensional. And the deformed cross section will
be assumed to have the same form as a rigid-jointed frame whose joint displace-
ments are the same as the joint displacements of the cross section. With
stations and (:) having no displacements in the plane of the cross section,
and considering the required antisymmetry of the deformation, the above
assumption leaves only two degrees of freedom for the deformation of the cross
section in its own plane. That is, the displacements in the plane of the cross
section can be represented as a superposition of the displacements associated
with each of two component frame-deformation modes.t

The two frame—~deformation modes selected in the present analysis are
shown in figure 4(c). The first is obtained by imposing vertical displacements
of amount vy (z) upward at joint (:) and downward at joint (:) , while joint
is constrained to slide parallel to line 1-2 and joint (:) is similarly
constrained to slide parallel to line 3~4. These sliding displacements must be
vysin® , as shown in figure 4(c), in order to satisfy the inextensibility
assumption. The second component mode of cross-sectional deformation is that
obtained by displacing joint (:) an amount vz(z) perpendicular to line 1-2
and joint a like amount perpendicular to line 3-4, while joints (:) and
are constrained to remain undisplaced. In both component modes the interior
joints are permitted complete freedom of rotation, and the edge joints (:) and
(:) are either hinged or clamped, depending on which of the two kinds of external
restraint conditions is being considered along the trough lines (see INTRODUCTION).

Thus the displacements in the plane of the cross section are fully defined
by two unknown functioms of z: vy(z) and v,(2)

*The experiment does not correspond exactly to the present analysis because of
the interference which is evidently present between the end of the corrugation
and the transverse member to which it is attached. However the photograph does
serve to show the large magnitude of the flexural deformations that can occur
when the ends are not continuously attached.

+The assumptions made here about the deformation of a cross section in its own
plane are the same as in reference 2, except that it is evident from figure 10
of reference 2 that the joint displacements are being allowed only one degree of
freedom there instead of the two which they naturally possess.

12



Middle~-surface extensional strains. — In consequence of the assumptions discussed
above regarding longitudinal displacements, and utilizing the coordinate system of
figure 4(a), the z-wise displacements u for all points of the middle surface can
be expressed in terms of vy , ul(z) and uz(z) . The results are shown in the
column headed "u" of table 1. The corresponding extensional strains e are obtained

TABLE 1. - LONGITUDINAL DISPLACEMENTS AND STRAINS

Plate element Displacement, u Strain, €
s s, du
1 1 71 _
01 Yo + e (ul - uO) e dz - %1
s du s, /du du
2 - 1, 2( 2 _ 1)
12 Y + k (u2 ul) dz + k \dz dz )

23 u, _.23. fiz_ _2_S3. =
2 f dz £ /"

by differentiating these displacements with respect to z . The results are given in
the last column of table 1. Because of the antisymmetry of the longitudinal strains

with respect to the midpoint of plate element 23, it suffices to consider explicitly

only the three plate elements listed in the table.

Middle-surface shear strains. — The shear strains of the middle surface of the

plate elements of the corrugation arise from both the longitudinal displacements

and the displacements in the plane of the cross section. In view of the assumption
that u varies linearly between stations and the assumption of inextensional cross-
sectional deformations, for a given 2z the shear strain will be constant across the
width of any plate element. Considering the longitudinal displacements of figure
4(b) and the cross-sectional displacements of figure 4(c), one arrives at the shear
strains vy shown in table 2.

TABLE 2. - SHEAR STRAINS

Plate element Shear strain, vy
u, - u
1 0 _
01 e =T
u, - u
2 1 d . -
12 X + dz(v151ne) =y,
2u2 P
23 - —E;- 5—( sinf cosf) + z(v251n9) = Yy




Rates of twist of the plate elements. — It is expected that the twisting of the
plate elements will make only a minor contribution to the total strain energy, as
long as the length of the corrugation is several times the pitch. Therefore, in
computing the strain energy due to twisting of a plate element it is consdidered
sufficiently accurate to base this strain energy calculation on an overall rate of
twist computed from the displacements of the longitudinal edges of the element rather
than on the detailed variation of the rate of twist across the width of the element.
For example, the rate of twist of the plate element 01 will be taken as d(vy/e)/dz ,
in accordance with the edge displacements shown in figure 4(c) for this plate element.
The rates of twist ¢ obtained in this way are shown in table 3.

TABLE 3. - RATES OF TWIST

Plate element Rate of twist, ¢
a/'1\ _
01 E<E—>:¢l
]
a (Y2 a [Vi°°s )-
12 'dz(k)‘dz( K =4
s .2
- 4 2v151n ] N d vzcose -
dz £ dz £ -3

Strain energy compoments. — On the basis of the assumptions discussed above
regarding the deformations, it is now possible to write expressions for the following
strain-energy components: (&) middle-surface extension, (b) middle~surface shear,
(c) twisting of the plate elements, and (d) frame bending of the cross sections.
Expressions are developed below for the density (i.e., strain energy per unit length
of corrugation) of each of these components.

(a2) Middle-surface extension: The strain-energy density of middle-surface
extension can be obtained from the expressions for & in table 1 in conjunction
with the assumption that the associated longitudinal normal stress o i1is related
to € by the uniaxial expression

¢ = E'¢ (1)

vhere E' 1is Young's modulus.* The following expression is thus obtained for the
extensional strain energy per unit length of corrugation:

©3 k4 £y
Uext = 2 f E-cleltdsl+ 2 I E-ozsztdsz + I 0 0353tds3
o 0 o
¢ k 2 1f 2
— r =
= E't J € dsl + I £y d52 + 3 j €5 ds3 (2)

o o

C

*The prime on the Young's modulus symbol is merely a tracer to distinguish this
Young's modulus, associlated with extension, from another Young's modulus associated
with flexure, which will be introduced shortly and denoted by E .

14




where the subscripts 1,2,3 denote the plate elements 01, 12, 23
respectively. Substituting for €1, €2 and €3 the expressions from
table 1, and carrying out the integrations, one obtains

2 2
U = b ] + 2b i i TR b e (3)
ext 11 dz 12 dz dz 22l dz
where
1 k
= 1 @ —
bll E'te 3(1 + e)
S S
b12 = % E'tk (4)
b.. = L E'L(f + 2K)
22 6

(b) Middle-surface shear: Assuming the shear stress T linearly
related to the shear strain <y through the elastic law

T = Gy (5)

where G d1is the shear modulus, one obtains the following expression for

the strain energy of middle-surface shear per unit length of corrugation:

= ol . ;L_ _1
Ush = 2 2 tlylte + 2 2 szztk + 5 1373tf
2 2 1 2
= Gt(yle + sz + E-YBf) (6

Substituting for vy;, Y2, Y3 the expressions in table 2, one obtains

_ 2 2 2
Ush = Spo%o T 1% F Cpo¥p + 2 cpugyy + 2 egpugn,
dv dvl dv2
+dyquy gt dyuy G Aoy 3
2 2
+ e¥ ﬁ: + ek il:rl + ek ﬂdﬁ )
11t dz 22\ dz 12 dz dz
where
- £ = £ e
0 = €% ¢ = €6 +P
- t £
. cE+2H (8)
- okt = .okt
o1 = €% P ¢ x

(equation continued on next page)
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dll = d22 = = 2 Gtsint
d21 = 2 Gtsinb(l - cosHd)
eil = Gtsin2 6k + % cosze)
egz = %-thsinze

efz = %~thsin26 cos8

(c) Twisting of the plate elements:

twist shown in table

/

Corresponding to the rates of
3 and regarding each flat-plate element as a bar of

narrow rectangular cross section*,the torques carried by the plate elements
01, 12 and 23 are respectively

= ! = ' = ’
T, G'J 9y T, G'J,9, T, I, )
where
Jl = 3et J2 = 3 kt J3 3 ft (10)
and G' denotes the shear modulus. (The prime on G is a tracer
introduced so that those terms arising from torsion can easily be
distinguished from those arising from middle surface shear.) The
total strain energy of twisting (per unit length of corrugation) is
therefore
_ 1 1 1
Uy = 2730 20 3 T8y +3 058y
_ ' 2 2,1 2
= G (J1¢1 + J2¢2 +3 J3¢3) (11)
or, substituting the expressions for ¢1, ¢2, ¢3 from table 3,
_(dvy 2 (aw,\ 2 _  dvy dv,
Vew = ell[dT tepl@m | tPuw w 12
where
J J 2J
e = G'|—t + -2 cos2p + —3 gin?
&1 G 5 + 5 Cos 6 + 5 sin 6
e k £
J 23
ey = G! —%—+ —51 cosze (13)
k b
_ JZ 2J 2
e = G'|—%5 cosb - —= sin"06cosb
12 kz f2

*The same result (eq.
bar theory.

(11)) can be derived using plate theory rather than
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(d) Frame bending of the cross sections: Considering a unit
length of corrugation to be a frame whose joint displacements are a
superposition of the two modes shown in figure 4(c), one obtains for
the strain energy a quadratic expression in vj and vy . The
derivation of this expression is in appendix A, and the result is

2 2
Ub = a;vy + 2a12v1v2 + a,,v, (14)

where

= D e)2 2 3__)24
a,; = 5233 [All + A22(k) cos 6 + 4A33(f sin 6

- AlZ.% cosd + 2A23 %~% sin26c056 - 2A13 %—sinze]

aj, = ;%;3-[;22[§J2c0s6 - 4A33(%]zsin28cose (15)
- %—Alz %—- A23 %-%(cosze - sinze) + A13 %—cose]

ay, = 812363 [Azz[ﬁf + 4A33(%]2cosze - 28,5 7 T cose]

The quantities B, A 1° A22, A33, Ao, A23, Al3 appearing in
equations (15) are dimensionless parameters depending on the geometry
of the cross section and the edge conditions regarding rotation along
the trough lines. They are defined by equations (A8) and (Al0) of
appendix A. The symbol o appearing in equations (A8) and (AlQ) is
defined as zero if the corrugation is free to rotate along the trough
lines and unity if the corrugation is clamped along the trough lines.

The symbol D appearing in equations (15) stands for the frame
flexural stiffness of the corrugation per unit width of frame, i.e.
per unit length of corrugation. There is bound to be some ambiguity
involved in selecting an appropriate value for D , inasmuch as the
frame bending moments are not truly uniquely determined by the
curvatures in the plane of the cross section alone (as was assumed
in deriving eq. (14)), but depend also on the longitudinal curvatures
or longitudinal bending moments in the plate elements making up the
corrugation. Only in the following three cases can it be assumed that
the frame bending moments and the frame curvatures are uniquely related:
(a) when the longitudinal bending moments are zero or negligible, (b)
when Poisson's ratio is zero, and (c¢) when the longitudinal curvatures
of the generators of the corrugation are zero or negligible. In cases
(a) and (b) an appropriate assumption for D would be the beam
flexural stiffness

17



D. = — Et . (16a)

where E is Young's modulus. In case (c) the appropriate assumption
would be the plate flexural stiffness

3
p = —E (16b)

12(1 - v%)

where v 1s Poisson's ratio. Of these two candidates, the latter

(eq. 16(b)) is judged to be appropriate for the present analysis, inasmuch

as for corrugation lengths several times the pitch one would expect the
longitudinal curvatures of the generators to be-small compared to the frame
type curvatures of the cross sections*, Therefore the rest of the analysis
will be based on equation (16b), but in order to assess the order of magnitude
of the uncertainity in the over-all shearing stiffness due to the ambiguity

in D a few calculations of shearing stiffness will also be made using
equation (16a).

Total strain energy. - Integrating each of the foregoing strain-energy
densities over the entire length of a corrugation and summing leads to the
following expression for the total strain energy U of a single corrugation:

b
U = J Ugpr + Uy + Uy, + Up)dz 17
-b

where U . USR’ Upys Uy, are defined by equations (3), (7), (12), and
(14) respectively.

*In the case of buckling of a plate-column with simply supported loaded
edges and free unloaded ends, it is shown in ref. 3 that the effective
flexural stiffness is already about five-sixths of the way from the beam
value to the plate value when the distance between the free ends is only
four times the distance between the supported edges. (The analogous
distances in the present case would be the length of the corrugation, 2b,
and (conservatively) the developed width of a corrugation.) In the case
of a column with clamped loaded edges the transition from the beam value
to the plate value occurs even more rapidly as the ratio of these two
distances increases.
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Total potential energy. — The prescribed shearing forces F along the
sides of a corrugation acquire a potential energy of -F * 2uj due to the
total longitudinal displacement 2ug of one side with respect to the other.
Adding this to the above strain energy U gives the following total
potential energy (TPE) of a single corrugation:

TPE = - 2Fu0 +U (18)

Minimization of the TPE. - The TPE as defined by equation (18) is a
functional of wup, ul(z), u2(z), v1(z), v2(z) . 1In accordance with the
method of minimum total potential energy (ref. 4) the "best" values of
these quantities will be those which minimize the TPE. To find these best
values, the technique of variational calculus may be used to form the first
variation of the TPE with respect to variations in ug, uj(z), ..., vy(z)
and equate it to zero. This will lead to a system of field equations
(primarily differential equations) and boundary conditions defining ug,
up(z), ..., va(z) .

The details of this procedure are given in appendix B. The reéulting
field equations, equations (B9) and (B8) of appendix B, are given again here
for convenience:

a?y a%u dv ~
b 1 + b 2 - l-d 1 - c.,u, - Cc. . u = ¢_.u
11 7, 2 12, 2 2 %11 4z 111 12%2 01'
dz dz
dzul d2u2 1 av, dv
bio T3 Thyy T3 m T d T2 %23z T 1% TG <0
dz dz
f (19)
2 2
d"v d"v du du
1 2 .1 1,1 2 ~
e 7 te T3 Ti4d 7% 3 TV T ey, 0
dz dz
d2v d2v du
e 1 + 2 + l-d 2z -a,v, = 0
12 7 2 €22 2 2 %22 4z a12V1 22V2
dz dz )
and
b
2c00u0b + cOlJ—b uldz = F (20)

Different sets of boundary conditions are obtained according to the
nature of the end attachment. If there are point attachments at the ends
of the trough lines only (fig. 3(a)) the boundary conditions at z = b are
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1 du,
—L -0 , L 0 (21)
dvl dv2

2e1y q5 T 20503z Ty tdyu =0
dv1 dv (22)

2e15 qz T 289y gz tdypu =0

If the attachments at the ends of the trough lines are wide as idealized
in figure 3c, it is only necessary to replace the first of equations (22)
by the condition

v = 0 (22')

Finally, if the attachments are as shown in figure 3b, namely point
attachments at the ends of both the crest lines and the trough lines, the
boundary conditions are

1 _2 -
iz -0 ’ dz 0 (23)
vlc039 + v, = 0 (24)
dv1 dv2
2(ell - elzcose)az—-+ 2(e12 - e22cose)a;—-+ dllul + (le - d22cose)u2 =0

(25)

As discussed in appendix B, these boundary conditions have physical
interpretations. The physical interpretation of equation (22') is obvious.
Equations (21) and (23) express the vanishing of normal stresses at the
ends of the corrugation. Equations (22) express the vanishing of certain
effective middle-plane shearing forces at the ends of the inclined plate
elements (12 and 34 in fig. 4) and the horizontal plate element (23)
forming the crest. Equation (24) expresses the constraint against
horizontal displacement furnished by an attachment at the end of the
crest line, and equation (25) the vanishing of the resultant equivalent
middle-plane shear at the ends of the inclined plate elements (12 and 34).

Solution of the equations. - Fundamentally the solution of the
problem consists of solving equations (19) for wuj(z), us(z), vi(z), vy(2)
in terms of uQ, subject to the appropriate set of boundary conditions.

The solution for wuj(z) is then substituted in equation (20), which
then gives ug in terms of F or F in terms of ug .

20



eSS

The equations involved are linear with constant coefficients, so the
procedure just described can be carried out in a straight-forward manner.
The full details of the solution are in appendix C, and only the main
features of the solution (those needed for computational purposes) will
be given here.

The numerical realization of the solution requires first that the
following characteristic equation be solved for its eight roots R = Ry,
R2, ceay R8: ’

2 4 2 4
t t)41p8 t £Yi156
[kgy + k82(e] + k84(e] IR™ + [kgy + k62(e) + k64[e) =

+ [k, &]2 + k44(§]4]R4 + [kzz(E]Z + Koy (’:‘]4]*‘2

+ [kM(E]"] = 0 (26)

e

where kgg, kgg. etc. are functions of the elastic constants and cross-—
sectional shape (but not thickness) defined by equations (C11), (C12)
and (Cl3). Calculations show that four of the roots are complex and
four real; from this and the fact that only even powers of R appear
in equation (26), it follows that. the eight roots can be represented in
the form

Rl = U + iv R5 = X
R2 = U - iV R6 = X
27)
R3 = ~U + iV R7 = Y
R, = ~U~- iV Rg = -

where U, U, X and Y are real numbers, and i = v-1 .

When t/e is small, the values of the eight roots can be computed
from the following power series expansions:

R = (%]l/z[co + ¢y £-+ CZ(E]Z + ...] (28)
R = q, + qZ[EJZ + q4(§]4 + ... (29)
R = p g+ P3(§J3 + Ps(%]s +ove (30
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where the coefficients e¢g, €1, .-.5 909> 925 +++s Pls P3s ... are defined
by equations (C21), (C19) and (C20). Equations (C21) give four sets of
complex values for cg, c¢i, ..., and therefore equation (28) generates the
four complex roots R1, Ry, R3, R; . Equation (C1l9) gives two sets of real
values of qg, qp, ...; the two real roots thus resulting from equation (29)
will be identified with Rg and Rg . Similarly equations (C20) yield two
sets of real values for pj, p3, ...; thus equation (30) yields two real
roots, which will be identified with Ry and Rg .

With U, V, X and Y known, the displacements can be computed in
terms of up from the following equations:

A
ul(z) 1 Uz Vz A4 . Uz . Vz
= g, +| —|cosh — cos — + | —lsinh — sin —
u 1 u e e u e e
0 0 (0]
A A
+ =2 cosh Xz + e cosh Iz (31)
U, e Uy e

Yo Yo Yo
- -
+ u_ajPB - (u—l}lB inh — sin Vz
0 0
=5 B X f7 B Y
+| —21s” cosh =% +| —L|1° cosh =& (32)
u e u e
0 0
v, (2) S1c [%1)c Uz . Vz
= —I|P" - o Q" |cosh 2 sin
Yo Yo 0
A A
+ [u—l]PC + u—l’]QC sinh g_z cos Zﬁ
0 0
N A.
+ (—S)SC sinh Xz +(—7 TC sinh Yz (33)
uy e uy e
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v, (2) A A
2 = 4 PD -(u—l QD cosh — sin Yz
Yo Yo 0
+ —-J;PD+ —Z’QD sinh—zcosv—z
u u e e
0 0/ |
(&, (4.
+ u—s)sD sinh 22 4| LI ginn L2 (34)
\ "0 \ "0
vhere £, and L, are defined by equations €2); PB’C’D, QB’C’D, SB’C’D,
and TB’C’D are obtained by solving egpatipn%f(027) for j=1, 5and 7
E K A
and noting equations (C29); and 613 553 323 EZ- are obtained by solving

0 0 0 0
equations (C33) if there are point attachments at the ends of the trough
lines only, (C38) if there are point attachments at the ends of the trough

lines and the crest lines, or (C38') if there are wide attachments at the ends
of the trough lines only.

Relationship between F and Uy - The above results give the displace-

ments in terms of ugy , which is one half of the relative shearing displace-
ment of the two sides of the corrugation. In order to determine the
displacements resulting from prescribed shearing forces F rather than
prescribed shearing displacement, it is necessary ‘to know the relationship
between F and ug . This relationship is given by the following equation:

F _ Gtb
o T e P (35)
0
wvhere
_ ell®2 . ub|vR +v&8 _ [ . w|u& - v
A T Y e e R NN I g
0 U“ + v Yo U +v
A, 3.
+| =2 sinh PX|L | 7 ginn DYIL (36)
u0 e X uo e |Y

with &¢ and 63 defined by equations (C35).

Equation (35) gives the overall shearing stiffness of the corrugation.
It is of interest to compare this shearing stiffness with certain other
shearing stiffnesses. For example, if there were continuous attachment at
the corrugation ends capable of producing uniform middle surface shear
strain throughout the corrugation, that shear strain would be

2u0

Y % ¥k +E (37
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where 2e + 2k + £ 1is the developed width of the corrugation. The
corresponding shear force would be

F' = Gt - 2by' (38)
and the corresponding overall shear stiffness would be

F' - 2Gtby' - Gtb

(39)

The ratio £ of the shear stiffness F/2u, of the actual corrugation
(eq. (35)) to the shear stiffness F'/2u, of the hypothetical continuously
attached corrugation (eq. (39)) is thus given by

1f
+ 5D (40)

A second kind of relative shearing stiffness can be obtained by
comparing the stiffness of the actual corrugation (eq. (35)) with that
of a uniformly sheared flat plate having the same thickness ¢t , the same
width p , and the same length 2b . Such a flat plate with a relative
shearing displacement of 2u; between its edges would require a shearing
force of

2u
F" = Gt - 2b - (41)
whence its overall shearing stiffness would be
F" _  2Gtb
e, - p (42)

0

Thus, the ratio Q' of the stiffness of the actual corrugation to that of
the hypothetical flat plate is

= B
@' 2e v
= @+ % cos® + %%)IIJ (43)

Finally, the shearing stiffmness of the corrugated plate can also be
described in terms of an effective shear modulus in the following way:
The average shear stress T,, along an edge of the corrugation is

T.v = oh% (44)
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and the overall shear strain of the corrugation will be taken as

Defining an effective shear modulus

eff

Stresses. - Thé displacements
key to the computation of the stresses in the corrugation.
for computing the stresses will now be given.

[}

2u0

Yov = T3 (45)
Gogg 85 Tay/Yay » it follows that

F.p _ P _E_

2bt 2u 2bt 2u
0 0

p_, Gth

2bt e

. B

¢ 2e v

o' (46)
ul(z), us(z), vy(z), va(z) are the

The equations
In order to avoid lengthy

expressions, the following short-hand notation will be employed:

A,
= 1 sinh —
Yo
A
= oosimh
0
y 47)
= "—1'5— sinh —
0
=
= 1 sinh eﬁ
%o
= sinh Uz sin Yz
e e
= sinh Oz cos Yz
e e
(48)
- Uz . Vz
= cosh — sin —
e e
= cosh Uz cos Yz
e e
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= Xz
st(z) = sinh -
= ainh Y2
fSY(z) = sinh S
49
f .(z) = cosh Xz 49)
cX - e
_ Yz
ch(z) = cosh =
= 1 .U_b
Sy = sinh e
= ciph X2
Sy = sinh S (50)
= sinh YP
Sy = sinh e
uf + V£ - Uf - Vf
v = (ap® - 200y —8s____cc . pC Cy _cc 'ss
V') = (4P A,Q7) S + (AP + 4,07 S
U U
- £ - f
+A.8% X 4+ 4 10y <X (51)
5 s 7 s
X Y
- . - Uf + V£ - - uf - VE
V,'(z) = (a,P° - a Q") —S8 ¢ 4 @’ +4aQ)) —C& 88
2 4 1 s 1 4 s
U U
- f - £
+ A sPx —F 4+ 4 7Py <X (52)
5 Sy 7 Sy

The longitudinal normal stress c® along junction ® (see fig. 4(a))
is then given by

dul
0’@ = E' e (53)
whence
o e . Uf - VE . Uf +Vf . Xf . Yf
'@ = A sC cs A cs sc . A sX + A sY (53a)
E u, 1 sy 4 Sy 5 Sy 7 Sy
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Similarly the longitudinal normal stress
in non-dimensional form by

ag e

E'u0

0@ along junction @ 1s given

~ B ~ B Ufsc B Vfcs ~ B ~ B 'Ufcs + stc
(AP° +A,Q) =-S5+ (AP -A Q) ——S5C
1 4 SU 4 1 ]
U
. sPxf L - 1By £y
+ Ay —— + A, ——= (53b)
Sx Y

The middle-surface shear stresses in the plate elements making up the

corrugation can be obtained with the aid of table 2,
Tgls T1z, and To3 for the plate elements

denoted by

These stresses are
01, 12, and 23

respectively, and the following non-dimensional measures are obtained for

them:

N N X cY
£, -1 +A =S4 SS 44 44 (54a)
1 1 U 4 SU 5 sx 7 sY
e N B ~ B fcc
¥iop -5 H A -1)+A4Q];;~
~ B ~ B fgg
+[a, @ -1) -4Q]—
4 1 s,
U
~ B fx - B foy ~
+A (S - 1) =24+ A (T° - 1) =5} + V. sins (54b)
5 s 7 s 1
X Y
-2 &e +(APB+AQB)—f°c+(APB-AQB)——fSS
£l°2 1 4 s 4 1 s
U U
T S - -
+A.8° L 4+ A T° 2| +V_'sind cosb + V., 'sinsd (54¢)
5° sy 7 sy 1 2
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The rates of twist of the plate elements are given in table 3. The
extreme-fiber shearing stresses due to these rates of twist will be
denoted by Tél, Tiz, 153 for plate elements 01, 12 and 23 respectively.
They can be obtained by multiplying the corresponding rate of twist in
table 3 by G't (ref. 5). The resulting expressions are

0l - t oo

G'uo - Vl (55a)

t!.e - -

G%i = - %{VZ' + Vl'cose) (55b)
0

238 t,> 2 -

o, - T 2 ?{Vl'sin e - Vz'cose) (55c)
0

The bending moments and stresses associated with frame-like deformations
of the cross sections are now considered. At a given cross section these
bending moments vary linearly between junction points, in consequence of the
assumptions made at the outset, and therefore only the bending moments at the
junctions need be evaluated. Referring to figure 8, the bending moments of
interest are seen to be Myj, Mjs and Myg at junctions 0, 1 and 2 respectively.
These bending moments are given by equations (Al), with 61 and 69 defined
by equations (A7) and A7, Ay, A3 defined in table Al. Multiplying the
bending moments by 6/t2 , one obtains the corresponding extreme-fiber bending
stresses, which will be denoted by ¢’ , gL and gl respectively and will be

positive for compression in the upper fibeF¥s. Thé& resulting equations for
these stresses, in dimensionless form, are

%5

Eu, 811 812 vy/ug
‘e
o} B
Eu, 1 - 2)e 21 22 | 2770 | (56)
gle
Fu 831 83
|0 ] - |

where vl/u0 and v,/uy are given by equations (33) and (34), and the
gij matrix elements are defined as follows:
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- a, 2 cost - 2a E—sinze) + 3o

g1 T 1T %2k 3t
= %, & =
810 = (-3 i * 223 § cos)
_le - £ cost - g sin’
81 = FEL2ep * by - (23, + by cost - (hag + 2by) sin”6]
- 3(%)2 cos® 57
g, = S-(2a, + b))+ (4a, + 2b)S cos6] - 32
22 s & 2 T by 3 3% k
= 3%, - b, 2 cose - 25, & sine) - 62 sin’
831 = 3 f(b1 b, } cosd 2b3 7 sin”8) - 6(F" sin”6
= §.E{_b £+ 20, £ cost) + 6(2)2 cos®
832 BE. 2k 3 f £
with
a; = ~6(1+o)2p+3P
- ee &
a, = -12 k(k +3 f)
_ ee
(58)
_ e
bl = 6(1 + a)k
- & &
b2:_6k(2k+3+a)
- & &
by = =6 (4 +3+a)

Special cases. - The above results apply to the general case in which
none of the dimensions e, £ and k is zero (fig. 10a). Two special cases
are of interest because they represent limiting geometries obtainable or
nearly obtainable in practice. These are the cases f = 0 and e = 0
shown in figures 10b and 10c.

The analyses for these two cases are contained in appendixes D and E
respectively, and only the main results of these analyses will be cited
here. In appéndixes D and E only the end conditions of figure 3(a) are
considered. With e or f approaching zero, the end conditions of figure 3(b)
are equivalent to continuous attachment since the deformation of the end
cross section in its own plane is then completely suppressed. Similariy
with f approaching zero, the end conditions of figure 3(d) are also
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equivalent to continucus attachment. With e approaching zero, the end
conditions of figure 3(d) are equivalent to those of figure 3(a).

The case £ = 0 leads to a fourth degree (rather than an eighth
degree) characteristic equation, (D21), whose four roots (all real) have
the form (D25). The numerical evaluation of these roots can be done
exactly by means of the quadratic formula or approximately by means of
the series expansions (D26). With the roots known, equations (D31) give
the values of certain constants ?l and y3 . Equations (D33), with A3
K3 defined by (D34), then give the displacements uj(z) and v(z) .
Equation (D37) is the basic form of the result for shear stiffness, and
equations (D40) through (D44) give the stresses.

For the case e = 0 the characteristic equation, (E16), is also
of fourth degree with real roots in the form (E20) having series expansions
(E21). A knowledge of the roots permits certain quantities ?l and §3
to be evaluated (eq. (E24)). Then the displacements u3(z) and v2(z) can
be obtained from equation (E25) with A% and Az* defined by (E26).
Equation (E28) gives the basic shearing stiffness result, and equations
(E33) through (E38) give the stresses.

NUMERICAL RESULTS AND DISCUSSION

The foregoing analysis was used to obtain numerical results on shear
stiffness, stresses and deformations for selected geometries and end-
attachment conditions. Poisson's ratio v was taken as 0.3, G was
taken as E/[2(1 + v)] , and no distinction was made between E and E'
or G and G' , except for a special numerical investigation of the effect
of torsional stiffness, in which G' was set equal to zero.

For the numerical studies, only the case of trough lines free to
rotate (o = 0) was considered, and the cross sections were limited to the
case f = 2e , that is equal width for the trough and crest plate elements.
In varying the cross sections h/p and f/p were taken as independent
parameters and assigned the following values:

h/p = .2, .4
f/p = .2, .4, .5

Table 4 shows for each combination of h/p and f£/p the resulting values
of 0, k/p, k/f, and p'/p (ratio of developed width to projected width),
and a diagram of the cross section.

Shear stiffness. - Figures 11 through 13 give the basic numerical
results for shear stiffness. The results are given in terms of the
relative shear stiffness parameter § , defined as the ratio of the
absolute shear stiffness F/2ug of the actual corrugation to that of
an identical corrugation with continuous end attachment producing a state
of uniform shear (eq. (39)). To convert the relative shear stiffness
into absolute shear stiffmness F/2u0 s, it is only necessary to multiply
Q by Gtb/(e + k+ 1/2 £) , in accordance with equation (39). That is,
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TABLE 4

CROSS-SECTIONAL GEOMETRIES CONSIDERED IN CALCULATIONS

% 5" zps (de:rees) % % % Diagram

.2 .2 33.7 .361 1.85 1.121 {A:_
.4 63.5 .224 .56 1.247 _}_/—\_i_
.5 90 .200 .400 1.400 +_l——l_+

A .2 53.1 .500 2.50 1.400 A
A 76 .412 1.03 1.625 I\__:,
.5 90 .400 .800 1.800 .:__J L+
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ZF _ thl @ = St (59)
Yo e+k+5f P

In these figures Q is given as a function of bt/p2 for selected
values of h/p and f/p (= 2e/p) and two values of t/p . Figure 11 is
for the case of point attachment at the ends of the trough lines only
(fig. 3(a)), figure 12 for the case of point attachment at the ends of
both the crest lines and the trough lines (fig. 3(b)), and figure 13 for
the case of wide attachments at the ends of the trough lines only (fig.

3(d)).

Figures 14, 15 and 16 present the same data as figures 11, 12 and
13, but re-plotted on log-log scales in order to show more clearly the
relationship between @ and bt/p2 in the region of very low Q and
very high § . Each curve has a kink at @ = .5 . To the left of this
kink the curve gives @ as a function of bt/p2 ;3 to the right of the
kink it gives 1 - Q as a function of bt/p?

By comparing the dotted and solid curves in each figure, it is
seen that  1is mainly a function of bt/p2 , i.e. relatively insensitive
to t/p , with the maximum sensitivity occurring for the case of wide
attachments at the ends of the trough lines. The fact that & is mainly
a function of bt/p2 means that the length (2b) and the thickness (t)
have approximately equivalent effects in altering the shear stiffness.
More precisely, it can be said that a given percentage change in t or
the same percentage change in b will produce approximately equal
relative changes in the shear stiffness. Observing that the product bt
also appears explicitly in the right side of equation (59), it can also
be said that the percentage change in the absolute shear stiffness (F/2ug)
will be greater than the percentage change in the relative shear stiffness

()

Comparison of figures 11 and 12 (or 14 and 15) shows that, except
in the region of very low § , there is negligible increase of stiffness
by having point attachments at the ends of the crest lines in addition to
point attachments at the ends of the trough lines. However, comparison
of figures 11 and 13 (or 14 and 16) shows that an appreciable increase of
shear stiffness is obtained by changing from point attachments to wide
attachments at the ends of the trough lines. This increase is also an
upper limit to the increase that can be expected as a result of
interference, like that shown in figure 5, between the troughs and the
end member to which they are attached.

As is to be expected, figures 11 to 13 (or 14 to 16) show that an
increase of h or f will lead to a reduction of the relative shear
stiffness © . Since increasing h or f also increases the developed
width p' , equation (59) shows that the absolute shear stiffness F/2u
will experience an even greater reduction, percentage-wise, than the
relative shear stiffness Q .

0

32



Displacements and stresses. — Detailed displacement and stress
patterns along the length of the corrugation were computed only for
one type of end attachment, namely point attachments at the ends of
the trough lines (fig. 3(a))._ Table 5 shows the geometries considered,
as defined by h/p, £/p, bt/p2 and t/p . As a matter of interest, the
length-pitch ratio 2b/p and the relative shear stiffness  of each
geometry are also given. The last column of table 5 tells the figure
in which the results are plotted.

TABLE 5. - GEOMETRIES CONSIDERED FOR DISPLACEMENT AND STRESS CALCULATIONS

h/p £/p bt/p2 t/p 2b/p 2 Figure
.2 .2 .02 .005 8 .2155 17(a)
.02 2 .2201 17(b)
.2 .005 80 .8928 17(c)
.02 20 .8933 17(d)
b A .02 .005 8 .0194 17(e)
.02 2 .0211 17(5)
.2 .005 80 .5954 17(g)
.02 20 .5960 17(h)

The displacements selected for plotting, and shown as functions of
z/b in the lower parts of the figures, are the longitudinal displacements
u] and u2 along junctions and (:) (see fig. 4(b)) and the amplitudes
vy and vy of the lateral displacement modes of the cross section (see
fig. 4(c)). These displacements are given through the dimensionless
parameters uj/ug, up/up, vi/ug and vy/ug

It is seen from these figures that for the smaller length-to-pitch
ratios (8 and 2), the longitudinal displacements wuj and ug are
approximately constant along the length and the lateral displacements
vl and vy are very nearly linear in z . However it is seen that this
behavior does not hold true for the larger length-to-pitch ratios (80 and
20). For those, uj and up may be approximately constant in the central
region but vary sharply near the ends, as in figures 17(c) and (d), or
they may vary markedly over the entire length as in figures 17(g) and (h).
These same figures show that vj and vo may be noticeably non-linear in
z , sometimes being very small in a central region and very large near
the ends as in figures 17(c) and (d).

It has been the custom in previous analyses of the shearing of
corrugated plates with discrete end attachments to assume inextensional
deformation for the middle surface of the sheet. This leads to the
straight-1ine generators of the corrugation remaining straight lines, and
as a result the longitudinal displacements become independent of =z while
the lateral displacements vary linearly with =z . The present results
suggest that this assumption can sometimes seriously misrepresent the
actual displacement patterns.
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Comparing any set of curves for t/p = .005 with the corresponding
set of curves for t/p = .02 , one is led to the following simple
conclusion regarding the dependence of v;/uy and vp/ug on t/p :

All other things (h/p, f/p, bt/p2) remaining constant, vi/ug and va/ug
vary inversely as t/p . It should be kept in mind, of course, that
bt/p2 remaining constant implies that b/p must vary inversely with
t/p as t/p changes.

The stresses which are plotted in the upper parts of the figures
are: the mid-plane shearing stresses 1tQ1, T12 and 123 1in the plate
elements 01, 12 and 23 respectively; the extreme-fiber transverse
bending stresses 0@' and 0@' at junctions @ and @ respectively;
the extreme-fiber shearing stresses 1{7, Tiz and 1543 , due to torsion
only, in the plate elements 01, 12 and 23 respectively; and the
longitudinal normal stresses c@ and 0@ at junctions @ and @
respectively.

The stresses o and U§:> ,are positive for tension. The sign
conventions for 1qj3, Tél and~ o are shown in figure 18, and the sign
conventions for the corresponding stresses in the other plate elements
are analogous to those shown in figure 18.

The stresses in figure 17 are given through the dimensionless parameters
TOlp/Euo ,» etc. These are best suited to the situation in which one
wishes to determine the stresses resulting from a prescribed relative
shearing displacement 2up . If one wishes instead to determine the
stresses resulting from a prescribed shearing force F it would be more
convenient to have the stresses given via the dimensionless parameters

To1 To2

F > —F—— , etc.
(th] (thJ

which represent the ratio of the stress in question to the average applied
shearing stress. Equation (59) can be used to effect the conversion from
one dimensionless stress parameter to the other, as in the following
typical example:

o1 _ o1 _ (T01p] .[EL_EL
P

( F ] Eu 2G
2bt

0
This shows that to convert any numerical value of 1gip/Eug into a
corresponding numerical value of 7gy/(F/2bt) it is only necessary to
multiply the former by the factor

] (60)

Ol

1]

E p°
P

D=

2G

The conversion equation (60) applies with <11 replaced by any of the
other stresses.
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Turning now to the stresses themselves and examining their magnitudes,
it is seen that in all the cases investigated the predominant stress is
the end value of the extreme~fiber stress cq;' due to frame bending of
the cross sections. The next largest stressés are the middle (z = 0)
values of the middle-surface shear stresses 101, T12 and 123 , except
in the case of the very short corrugations (figs. 17(b), (e), (f)), when
the torsional shear stresses at 2z = b may be higher than the middle-
surface shear stresses at z = 0 . In these exceptional cases, however,
both shear stress maximums are much smaller than the maximum magnitude of
G(Ei . The maximum value of c(:j is generally much smaller than the maximum
o] .

@

In all cases the longitudinal normal stresses o and o are seen
to be of negligible magnitude compared to the maximum Value of the
transverse bending stress o(;)'. This suggests that the assumption of
inextensibility of the generators (rather than inextensionality of the
entire middle surface) may be a legitimate simplifying assumption for
purposes of analysis.

Examining the variation of the stresses across the corrugation, it
is seen that the middle-surface shear stresses 11, T12 and 723 are
only slightly different from each other (except near the ends), while
the other kinds of stresses do show significant variation across the
corrugation.

The variation of the significant stresses along the length of the
corrugation seems to correlate with the nature of vi1(z) and vy(z)
When these lateral displacement components are nearly linear in z (as
in figs. 17(a), (b), (e), (f)), the frame bending stresses o(:j and o<:j
are also nearly linear in 2z , and the middle-surface shearing stresses
T0ls T12s T23 are approximately parabolic in 2z . When vi(z) and vyp(2)
are small in the central region and large near the ends (as in figs.
17(c) and (d)), the frame bending stresses exhibit a similar behavior,
and the middle-surface shearing stresses are nearly constant along the
central region, dipping towards zero near the ends.

Comparing any set of curves for t/p = .005 with the corresponding
set of curves for t/p = .02 , one can investigate the effect of t/p
on the major stresses, i.e. on the mid-plane shear stress 123 , the
torsional shear stress Tél and the frame bending stress o(g) . The
following behavior is apparent: All other things (h/p, £/p, bt/p2)
remaining constant, T53 and o remain virtually unchanged as t/p
varies, while 161 varies directly with t/p . (As noted previously,
however, b/p must vary inversely as t/p if bt/p* 1is to remain constant.)

Effect of torsional stiffmess. - In the analysis it was assumed that
the strain energy of torsion of the plate elements would account for only
a small portion of the total, and that therefore this strain energy could
be computed approximately by assuming a constant rate of twist across the
width of each plate element, this constant rate of twist being based on
the lateral displacements of the edges of the plate element.
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The smallness of the computed values of the extreme-fiber shear
stress due to torsion compared to the extreme-fiber normal stress due
to frame bending tends to confirm this assumption, or at least is
consistent with it. Only in the case of the very shortest corrugations
(2b/p = 2) does the largest torsional stress 161 , start to look
significant compared to the larger frame bending stress c(:)' .

The unimportance of the torsional stiffness is demonstrated further
by figure 19 which, for four selected cross—-sectional geometries, compares
the @ versus bt/p2 relationship obtained by neglecting torsional
strain energy (G' = 0) with that obtained by considering it (G' = G).

In figure 19(a) the curves for G' = 0 and G' = G are indistinguishable
from each other; in figure 19(b) they are only slightly distinguishable
from each other at their lower ends.

In figures 17(d) and 17(e) the dotted curves show the effect on the
stresses and displacements resulting from complete neglect of the torsional
strain energy in the derivation of the differential equations. It is seen
that there is no noticeable effect on the major stresses and displacements
and only a small effect on the others.

Effect of frame flexural stiffness. - In the analysis it was pointed
out that there is bound to be some ambiguity in defining an appropriate
value for the frame flexural stiffmess D , and two possible values were
mentioned: the beam flexural stiffness Et3/12 and the plate flexural
stiffness Et3/[12(1 - v2)] (egs. (16a) and (16b)).

The calculated results thus far presented are based on the latter
value of D . 1In order to determine the possible effect that the
uncertainty in D might have on the overall shearing stiffness, some
computations of Q were also made using the former value. The results
are also shown in figure 19, where the curves now to be compared are the
solid and the dot-dash curves., It is seen that the change in Q due to
using one value of D instead of the other is negligible. The effect
on the frame bending stresses can of course be expected to be more
significant, amounting to perhaps ten percent when Vv = .3 . For reasons
discussed in the analysis section, it is felt that the value of D wused
in the analysis (eq. (16b)) is the most appropriate one.

COMPARISON WITH EXPERIMENT

Bryan and Jackson in reference 2 give experimental data on shearing
force versus shearing deformation for a single corrugation. The. geometry
of the test specimen and the experimental results are shown in figure 20.
The Young's modulus and Poisson's ratio of the material are given as
107 psi and 0.25 respectively in reference 2.

The solid lines in figure 20 show the results computed for this
geometry from the present theory, using four different assumptions
regarding the restraint conditions along the sides and ends. Considering
the thinness of the sheet, the smallness of e , and the probable size
of the bolt heads used in the attachments, it is felt that the uppermost
theoretical solid line is the most appropriate one to use for comparison
with the experimental results. From figure 20 it appears that this line
agrees fairly well with the initial slope of the experimental curve.
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Since the present theory is a linear one, no comparison except with
the initial slope is valid. Figure 20 does point up, however, the non-
linear behavior possible with extremely flexible corrugations like the one
tested. (This non-linearity is probably due to the membrane action
associated with large twisting of the plate elements, as suggested in
reference 2.)

It should be noted that the bt/p2 parameter for this specimen has
the following value:

bt . (6:25)(.0057) 001425
) (5.00)

which is probably outside the range of most practical applications and
below the smallest value (.005) considered in the bulk of the present

calculations. For larger values of bt/p2, i.e, geometries of larger

relative stiffness, the behavior should be more nearly linear.

CONCLUDING REMARKS

A theoretical analysis has been presented of the shearing of a
trapezoidally corrugated plate with discontinuous attachments at the ends
of the corrugations and with the trough lines constrained to remain
straight. The last condition means that the analysis is applicable pri-
marily to the case in which the corrugated plate is attached a flat plate
or some other structure along its trough lines to prevent these lines from
curving in the plane of the plate, and it will over-estimate somewhat the
shearing stiffness of a corrugated plate without such constraint. By
adding one degree of freedom to the displacements in the plane of the
cross section, the analysis can be extended to the case in which the
trough lines are permitted to curve in the plane of the plate, and it
will then be more precisely applicable to the case of a corrugated plate
alone.

The present analysis is considered to be more accurate than previous

shearing analyses of corrugated plates (e.g., ref.2) in the following

two respects: (a) it permits more degrees of freedom for displacements
in the plane of the cross section, and (b) it does not assume that the
straight line generators of the corrugation remain straight lines. It
should be noted that the presence of the last assumption in an analysis
prevents that analysis from distinguishing between the case of trough
lines held straight and trough lines permitted to curve.

Numerical results on over-all shearing stiffness, stresses and
displacements have been presented for selected geometries for the case
of no external rotacional restraint along the trough lines. The results
for shearing stiffness are for three kinds of attachment at the ends of
the corrugations: (a) point attachments at the ends of the trough lines
only, (b) point attachments at the ends of both the crest lines and the
trough lines, and (c) wide attachments at the ends of the trough lines
only. The stress and displacement numerical results are only for type
(a) end attachments.
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From a study of the numerical results it is evident that 2bt/p2
(length times thickness divided by the square of the pitch) is a very
significant parameter. The relative shearing stiffness (i.e. the ratio
of the actual shearing stiffness to that corresponding to uniform shear)
is primarily a function of this parameter and only secondarily a function
of t/p (thickness divided by pitch). And the major stresses and dis-
placements vary in a simple way with t/p if 2bt/p2 is kept constant.

For the range of geometries studied numerically the following main
features were observed for the stresses in the case of no external
rotational restraint along the trough lines and type (a) end attachments:
The largest stress in each case was the transverse extreme-fiber bending
stress associated with frame-like bending of the end cross sections. The
next largest stress was a middle-surface shear stress at the middle cross
section, except in the case of the very short corrugations, for which case
an extreme-fiber torsional shear stress could exceed the middle-surface
shear stress. In that case, however, both shear stresses were small
compared to the maximum frame bending stress. In all cases the longitudinal
normal stresses were negligibly small compared to the other stresses.

This last result suggests that in future work it may sometimes be
possible to simplify the analyses by assuming that the straight-line
generators of the corrugation are inextensible.

The numerical studies of over-all shearing stiffness showed that
the discontinuous nature of the end attachments can reduce the stiffness
to a value considerably below that corresponding to uniform shear,
sometimes (in the case of very short or very thin corrugations) to a
minute fraction of that value.

Very little increase in stiffness was obtained in going from type (a)
to type (b) attachment -- i.e., by adding point attachments at the ends
of the crest lines to point attachments at the ends of the trough lines.
However a considerable increase in stiffness was obtained by going from
type (a) to type. (¢) attachments -- i.e., changing from point attachments
to wide attachments at the ends of the trough lines.

This suggests that considerable increase in stiffness, in the case
of point attachments at the ends of the trough lines only, can also arise
from interference between the end of the deforming corrugation and the
member to which the attachment is made. (The importance of this inter-
ference was noted in ref. 7.) This kind of interference, being one-sided,
destroys the anti-symmetry of the deformation pattern that would otherwise
exist. It can be taken into account in the analysis by adding two more
degrees of freedom to the displacements in the plane of the cross section
and three to the longitudinal displacements. Additional complexity due to
these additional degrees of freedom can be minimized through judicious use
of the method of superposition.

We close with the following perhaps obvious practical observation:
I1f, for a given geometry, the objective is to maximize over-all shearing
stiffness and minimize frame bending stresses (which, as noted above, can
be the largest), this can be achieved by designing the end attachments so
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as to reduce as much as possible the frame-like bending of the end cross
sections. For the trapezoidal corrugation, this can be accomplished by
having, for example, attachments at the ends of both the trough lines

and the crest lines, with at least one of these sets of attachments being
the full width of the trough or crest. It can also be accomplished with
only point attachments at the ends of the crest lines and the trough lines
provided that there is interference with fairly rigid members at both these
places. The frame bending of the end cross sections can of course also be
suppressed by specially machined end fittings or by continuous-weld end
attachments.
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APPENDIX A

STRAIN ENERGY OF FRAME BENDING

A unit length of corrugation will herein be analyzed as a frame whose joint
displacements are made up of the two components shown in figure 4(c). The slope-
deflection method will first be used to determine the frame bending moments in
terms of vis Y, and the unknown rotation 6 of joints 1 and 4 and @ of

joints 2 and 3. The rotations 61 and 921 are taken positive when clockéise
as viewed from the positive end of the z-axis (see fig. 6). From these bending
moments the strain energy of frame bending can determined in terms of Vis Vo

1> and PR Using the condition of moment equilibrium for the joints, one can
evaluate 8, and 6, in terms of V1 and vy and thus eliminate the joint rotations
from the strain energy expression.

In order to carry out the analysis proposed above, the basic beam end-moment
formulas shown in figure 7 will be helpful. In applying these formulas to each
member of the frame, the appropriate 6 quantities can be obtained from the joint
rotations of figure 6, and the appropriate A can be computed from the vy and v,
joint displacements shown in figure 4(c). The A expressions are tabulated

below.

TABLE Al
Member A .
0l vy = Al
12 - V1 cosf - v2 = A2
.2 _
23 -2 v,sin 6 + 2 vzcose = A3

Using figure 7, the notation #4;, 4,, A5 defined in Table Al, and the
notation shown in figure 8, one can write the following expressions for the frame-

element end moments per unit width of frame (i.e., per unit length of corrugation):
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A
M. = a.(zp.e+ §_D__1)
e e e

01 1
" (3+2)D 340D M1
10 e 1 e e
4D 2D 60 22
Mo = Tt %tY © (aL)
w. - 2, .4, 6 "2
21 k "1 k 2 k k
A
. 60, .60 %3
Moz = F O tF F

where a is defined as zero if joints 0 and 5 are hinged, or unity if these
joints are clamped, and D is the flexural stiffness per unit width of frame

(i.e., per unit length of corrugation).

The bending moments vary linearly between joints in a frame with imposed
displacements and rotations at the joints. Thus the bending moments per unit
width of frame are given by the following expressions, in which bending moment

which puts compression in the upper fibers is considered positive:

M = MOl + %} (—M10 - MOl) for member 01
2
M = MlZ + (-M21 - M12) for member 12 (A2)
253
M = M23 1 - _?_) for member 23

The strain energy per unit width of frame (unit length of corrugation) can
be obtained by integrating Mz/(ZD) along the entire profile of the corrugation.

Thus the strain energy of frame bending is

1 e sl 2
U = 3|2 I My +Z Mg Mo dsy
5 _
Kk
Mpg ¥ o (M Ml dsy j My3 @ -] dsy
0 0

41



or
k 2

o1 ~ Moy Mig t My * o3p My~ My My F le) + D (Mzs) (43)

With the joint moments eliminated through equations (Al),

2
2p 2 A 6p , 2 4 %3 . 2
Ub = elz(a+3)+61—e-?(a+l)+(e) ?(3a+l)
2
2 2 A A A,
D 12D 2 2
= + === = —_—
+4k(el+elez+ez) ” [o =t 0, ¢t k)]
A s, 2
D .2 3, 3 (A4
+62[6, +20, 2+ () ] )

This equation expresses the strain energy of frame bending in terms of the
joint rotations el and 62 and the quantities Al, A2, A3, the latter being
functions of vy and v, defined in table Al. The rotations can be eliminated
from this expression by weans of the moment-—equilibrium conditions for the joints,
namely

M10+M12 = 0 and M21+M23 = 0. (A5)

By virtue of equations (Al) these conditions become

~—

— — Ia
(3+)D , 4D 20 re [ 30+p Y1 e %2
e k k 1 e e kK k
= (A6)
2 4, 6D 6 _et e’
|k Kk [ N |~ k k f f B
The solution of these equations is
A A A
= L e ey L e & e e 3
8, = gl-6 G +3D) - 127 €+3PE 128 £ D]
A7)
A A A
1 e 1 e e 2 e e 3
6 = E (—) - = = £y - £ = 2
, = g le (r) g () -6F @Qp+ 3D - 6% 4o+ 3]
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where )
e €. e e
4 (3+a) X + lZ(k) + 6(3+n) - + 24

" (A8)

™
m
Hhim

With equations (A7) wused to eliminate the rotations in (A4), the latter
becomes

2 2 2
& 4 A A, A A, A A, A
2e - L ars _3 L2 2.3 13
By Uy = A G T ApG) + A5G0 v Ay Tt Ay A3 E A9
where
2 2 2
- e e e (& e e e
A, =192,°Q@F+ 3P +7215% + +3)[k GC+2pleg+3p
2 e e e 2
+ 4323 +DIEE+2D] (A10a)
k) & £
A —24(+3)23(E+63)(25+33)
22 © “Hiae kK 'k £ k £
e 2 2 e 2 2 e e 2 e 2
+ 1466 [ +3)E) +2C +20+15) £ £+ 33 + 20 +15() ]
+ 864(—6—)3 L E+2D (A10b)
¥ f 'k £
A —43(m+3)2E L@ed+3d
33 ° kK Tk 3
eze e 2 e
+ 144 F L4+ 3) g+ (@ + 60+ 21) ]
vees S 42D (410c)
K f Ok 3
A =-144(3a2+za+3)E(E+3E)(2E+33)
12 K K ™ £
864(a2 + 1)(5)2(E +39E+2H (aA10d)
- ¥ 'k £ 'k £
- 2 ee 8,38 2y’ e ey, A
A13 = 144 (3a"+2a+3) % T (2 o + 3 f) + 864(a +1)(k) 3 (k + 2 f) (Al0e)
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e 2 e 2
- 288()) F [(@ + 4o + 15)

2
= - l44(a + 3)

e
k

e+3

2 X

o

e
2

e
k

3
e.” e ,e e
- 1728(—12) £ (k + 2 f)

(Inasmuch as a

subsequent equations involving «

Substituting for Ap» A, and A3
finally obtains Ub in terms of vy and Vo
2 2
U, = 35 v) t2a,, vy vytanv,
where
2 2 2 4
D e e . e
a;, = ;5;5 [A11+ Azz(k) cos g + 4A33(§) sin § - A, - cosd
428, € € gin’o coso - 24 < sin 8]
23 % f Sin cos 13 F 5%
2 2
D e e . 1 e
a, ;5;5 [AZZ(E) cosg - 4 A33 CE) sin 6 cosé® - 5 A12 "
2 2
e e X e
- A23 % F (cos B8 - sin 6) + A13 f cosh ]
L e 2 e 2 2 e e
822 = @ [A22 (E) + 4 A33 ('E‘) cos 6 - 2 A23 X T COSS]
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N

>

(A10f£)

takes on only the values zero and one, the above equation and

could be simplified by replacing 2 by o .)

the expressions from table Al, one

(A11)

(A12)
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APPENDIX B

VARIATION OF THE TPE

Equation (18) in expanded form is

b du, 2 du, du, du, 2
TPE = j [b), @) + 25 @ P 1
b
2 2 2
+ J (COO U + c11 Y + Chy Uy + 2c01 uy vy + 2 C1o Yy u2) dz
b
b dv1 dv1 dv2
+ I Ao d@ Y g Y g &
b
dv dv dv dv
1 2 )
+J \:ell(dz ) tenE) g dz] dz
b ) )
+ J (a11 v1 + 2a12 v, v2 + ay, v2) dz
“b
- 2Fu0 (B1)
where
— * -
e11 T e toeq
— * -
eyy = €y, + €5y (B2)
g * —
12 €12 t epy
The first variation of the TPE due to the variations Guo, dul(z),
6u2(z), 6v1(z), sz(z) is
b du, d(su)) du; d(8u,)  du, d(8up) du, d(su,)
§(TPE) = ZJ 113 Taz TP [dz iz t& 4z ]+b22 &z az |97

(equation continued on next page)
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b
+ ZI [%OOuOGuO + cyquy6Y + CpolUndly + €91 (uosu1 + ulsuo) + clz(ulau2 + u26u15] dz

~b

p d(sv))  dv, d(sv))  dv, d(ev,)  av,
* f dn[ul—dz—+vsua +d21E‘z—dr+'§6“z]+dzz[ T*HGUJ az

-b

b
' . dv1 d(svl) ‘e dv2 d(6v2) . dv1 d(GvZ) .\ dv2 d(le) .

11 dz dz 22 dz dz €12{dz dz dz dz z

~b

b
+ ZI [;11 vy Gvi + alz(vlév2 + vzévl) +a,, v, Gvéj dz

-b
- 2F+8u (B3)

0

Where the derivative of a variation appears in the integrand of equation (B3),
integration by parts will transform such a term so that the integrand involves
the variation itself, rather than its derivative, and will also introduce
boundary terms. For example,

b du, d(Su,) du b b d2u

J 22— 14 = (=% sup) , - j —2 su

dz d=z dz 1 dz2 1
-b -b -b

dz

Reducing all integrands in this manner wherever possible, and rearranging
terms, one obtains:

b
- . iy
§(TPE) = (Guo) J (2c00u0 + 2c01u1 b) dz
b
b gy d2u2 L vy
2f (-by =5 =B1y—5 *eqrugter urte upt 3 4y gp) (Sup) da
b dz dz
b du Ay, LAy Wy
ZJ (b1 Par 3 Yottt 7 htd T 7 G Buy) 42
b dz dz
b 1 dul 1 du2 dzv1 d2V
J (8y1v1*215% = 5 41y — 7 g —ei g ) (V) e
b dz dz

(equation continued on next page)
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b 1 du2 d2v1 d2v2
+ 2f (15V1 325V = 7 992 Ta T C12 T2 T %22 T 20 (0Vp) 42
b dz dz
. b
du1 du2 du1 du2
+ 2Ly 7+ D GuDT |+ 2l —55 + by, —53) (Guy]
-b . -b
dv1 dv2 b
+ [(dllul +dyu, + 2ep; 5ot 2e12 —E;)(le)] I
-b
dv dv2 b
+ [(d22u2 + 2&12 ~dz + 2822 _CE) (6\72)] I (B4)
-b

Equation (B4) is valid for the case in which there are point attach-
ments at the ends of the trough lines only (fig. 3(a)). 1If there are wide
attachments at the ends of the trough lines, as idealized in figure 3d, it
is necessary to drop out the boundary term involving év; , i.e. the term
next to the last.

If there are point attachments at the ends of the crest lines (fig. 3(b))
then §v; and &vg at z =+ b are not independent. The attachuent at
the end of a crest line restricts the attachment point against horizontal
and vertical movement in the plane of the cross section. The component cross—
sectional deformations of figure 4 automatically satisfy the condition of
zero vertical movement of this point but not the condition of zero horizoutal
movement. From figure 4(c) it is seen that the resultant horizontal dis-
placement of the crest plate element plate element is (v,sinB) cosf + v, sinB.
The vanishing of this displacement at z = * b implies that

(vl cosf + v2)z etb - 0 (B5)

whence

(dvl cosf + 6v2)z -+ b = 0 (B6)

Thus, when there are attachments at the ends of the crest lines, sz in
the last term of equation (B4) should be replaced by - 8v, cos6. The
last two terms of equation (B4) can then be combined, giving the following
form of & (TPE):
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b b b
(TPE) = (6u0) . J (eee)dz + 2[ (---)(Gul)dz + 2[ (---)(Guz)dz

~b -b b
b b
+ 2[ ("‘)(5V1)dz + 2[ (---)(sz)dz
b b
du, du, b du1 du2 b
+ 2 I:(b11 =z T P12 ——dz)(éul)] ‘ + 2 [(b12 = b_22 ——dz)(éuz)]
_b _b
dv dv
* [td11“1 iyt 2o g Y 21 TG
dv1 dv2 b
(dypuy + 2e), —3; + 2e5, —3,) °°Se](ﬁv1)] ‘ (B7)
-b

where the notation (*-+) has been used to indicate terms which are identical
to the corresponding terms in equation (B4).

Differential equations.- If the TPE is to be a minimum, & (TPE) must
vanish for any and all arbitrary variations in u,, ul(z), uz(z), vi(z), vy(z),
and it then follows from the integral terms in equations (B4) and (B7)
that Ugs  Ups Yy, Yy, Y, must satisfy the following equations:

b
4c00 uob + 2c01 J uldz -2F = 0 (B8)
b
d2u1 d2u 1 dv1
by T by ot egiYp e teppuytyd gy 7 0
dz dz
d2u1 d2u2 1 dv1 1 dv2
by T by T e et t o dy Tt gy 50
dz dz
(B9)
du du d2v dzv
+ SRS S . N S L_ . 2 _
811V T 819V T2 %1 Taz T 2 Y21 Taz T f11 12 2 -
dz dz
du d2v d2v
a + a, v, - i—d —_ - L - Z = 0
12V1 22V2 72 %22 Tz 12 2~ %22 2
dz dz
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Boundary conditions.- The vanishing of the boundary terms in equations
(B4) and (B7) requres that the variables satisfy certain conditions at the
boundaries (z = % b). For the case of point attachment at the ends of the
trough lines (fig. 3(a)), equation (B4) applies, and the vanishing of the
boundary terms in it leads to the following ‘boundary conditions:

du du

1 2
by Gz tPiza; 7O
(B10)
du du
1 2
by dztPp g = O
dv1 dv2
dyug Hdyyuy tt2ey; gt 20, 5 = 0
dv dv (B11)
dyouy + 28, g, * 289 4, = 0

at 2z = * b. For the case of wide attachments at the ends of the trough
lines (fig. 3(d)), equation (B4) applies but with next-to-the-last term
omitted. As a result, the first of equations (B1ll) is non-existent, and
the condition

vl(i b) = O (B11")

is used in its stead.

For the case in which there are point attachments at the ends of the
crest lines as well as the trough lines (fig. 3(b)), equation (B5) con-
stitutes one of the boundary conditions. The remaining boundary conditions,
implied by the vanishing of the boundary terms of equation (B7), are equations
(B10) again and the following equation in place of (BLl):

dvl dv
digugp *dyguy F 28 gt 28, T
dv1 dv2
—(d22u2 + 2812 dz + 2822 _dz_) cosb = 0 (B12)

2
20 = b12 of equations (B10) is non-

vanishing, these equations can be replaced by

Inasmuch as the determinant b11 b

= 0 (B13)
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Physical interpretation of the boundary conditions.- Equations (B10) or

(B13), in conjunction with the fact that duO/dz = 0, are readily interpreted
to mean that there are no longitudinal normal stresses acting at the corruga-

tion ends.

In order to interpret equations (Bl1l) it is first necessary to replace
the system of shear forces and twisting moments at the ends of the corrugation
by a statically equivalent system of shear forces alone acting in the middle
planes of the individual plate elements. This replacement is shown in figure 9,
which is a view of the corrugation as seen from the positive end of the z-axis.
Part (a) of figure 9 shows the basic system of shear forces Fl’ F2, F3
and twisting moments Tl’ T2, T3 acting on the ends of the individual plate
elements., The twisting moments are related to the deformations, via equations

(9) and table 3, as follows:

1
. ] G J1 dv1
1 e dz
G'J, dv dv
2 2 1
= - _ Bl4
T, w (5, + 3, cose) (B14)
G'J3 dv 9 dv
T3 = —§~—-(—2 47 Sin 6 + 2 —EE-cose)

The shear forces Fl’ F2, F3 can be expressed in terms of the deformations

with the aid of equations (5) and table 2. The result is

F1 = Gylet = Gt(u1 - uo)
dv1 ‘
F2 = Gyzkt = Gt(u2 -y + k —a;-sine) (B15)
dv1 dv2
F3 = Gy3ft = Gt(—2u2 + £ —EE-sine cosh + f —E;'sine)

Part (b) of figure 9 is the same as part (a) except that the twisting mom-
ments have been represented by pairs of parallel oppositely directed forces
acting at the junctions of the plate elements. In part (c) each such force
has been replaced by components parallel to the two plate elements forming the
junction at which the force acts. In part (d) of figure 9 all the forces
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acting as shearing forces
been replaced by a single

along the middle surface of each plate element have
resultant. These resultants are

_ T2 T
R]. = Fl -+ * cscg ~ ry cotd
- Tl T3
Ry = Fp* g cech =g cechd (B16)
= T3 )
R3 = F3 + 2 —f-cote -2 7: csch
and they will be called the effective in-plane shears. Expressing Tl, T2,
T3 and Fi» F2, F3 in terms of the deformations via equations (B14) and
(B15) gives
_ G'J 2G'J dav
R2 = -Gt u; +Gt u, + (Gt k sing + e2 cscl + f2 sing) -
2G'J dv
= 5 cotd) P (B17)
f
_ 4G'J 2G'J dv1
R3 = =2Gt u, + (Gt £ sinb cosd -~ 5 sind cosé + 5 cot8) Iz
f k
4G'J 2 2G'J dv
. 3 cos™ @ 2 2
+(Gt £ sinb + 5 Sinb + 2 csch) iz (B18)
£ k
For a free end the forces El and Tl/e in figure 9d need not
be zero. They are the forces furnished by the attachments at the ends of

However

Thus

the trough lines.

zero for a free end.

R2 and R3

, as far as the forces in the plane of the end

, the resultants do have to be

cross section are concerned, the conditions for a free end can be written as

and (B19)

or in the form of any two linearly independent linear combinations of these

two equations.

2R,

Choosing the linear combinations

sing + Eé

2 sinb cos®

(B20)
R.

3 sin6
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one finds, after substituting the expressions for k2 and Es from equations
{(B17) and (B18), that these linear combinations are identical to the boundary

conditions (B1l) obtained by the variational method.

For the case in which there are attachments at the ends of the crest
lines, Eé need not be zero inasmuch as the attachment 1s capable of ex-
erting a force. Only the inclined plate elements are free of effective in-

plane shear, i.e. ﬁé = 0. Writing this as

zié sing = 0 (B21)

and eliminating Eé via equation (B17), it is seen to be exactly equivalent
to the boundary condition (B12) obtained for this case by the wvariatiomal

method.
Thus the boundary conditions (B11l) and (B12) obtained by the varia-

tional method have been shown to be equivalent to the physical requirement of

vanishing of the effective in-plane shears Eé and ﬁé or E& alone.
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APPENDIX C

SOLUTION OF THE EQUATIONS FOR THE BASIC UNKNOWNS

In this appendix equations (19) will be solved for uq(z) , u2(z) .
vi(z) , and vo(z) in terms of u; (subject to the various sets of boundary
conditions discussed in connection with equations (19)). Equation (20) will
then be used to determine the relationship between the shearing force F

and the relative shearing displacement 2u0 of one side of the corrugation
with respect to the other.

Particular integral. - A particular integral of equations (19) is first
sought in the form

u, = constant, u, = constant, v, = 0, v, = 0.

1 2

For this form of particular integral equations (19) reduce to
c11"1 * S12%2 T ;Yo
C1oty + Coply = 0
whence

(c1)

where
“%01%22
_ 2
€11%22 T C12
(c2)
€01%12

)
€11%2 7 ©12

Thus a particular solutlon of equations (19) is

u =

1 £1Y%

> (c3)
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Characteristic equation for complementary solution. - To the above must
be added a complementary solution, which is the general solution of equations (19)
with right sides all zero. Solutions of this homogeneous system will be sought
in the following form:

u = Aerz w
1
u, = Berz
> (C4)
vl = Cerz
_ rz
vy = De
/

Substituting these assumptions into equations (19) with the right-hand sides all
zero leads to the following restrictions on A, B, C, D and r:

_-bllrz mey bppri-ep  mgdyr 0 | -;— ~° —
blzrz T %12 PyoT T Sy - %’dzlr - %’dzzr B 0
- %’dllr - %’dzlr 811~ e11r2 812 7 elzrz ¢ = 0
0 -3 dgpt 31y ~ elzrz 3y ~ ezzrij DJ 0
-(C;)

Thus, for mon-trivial solutions of the form of equations (C4), ¥ must satisfy
the following characteristic equation:

2 2 1
b3t T o b1aT 7 ey -5 dyy7 0
2 2 1 1
b1t T Sy byat = <y -7 4T =g 4yt
-1 d - 1 d e 2 - e r2 -0
2 ‘11T 2 9217 817 T €137 ay9 12
0 -~ 1 d - 2 e 2
2 9227 812 T €107 42 22T
(c6)
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Expanding the determinant, multiplying through by 16 for convenience,
and introducing the short-hand notation

~

a

o'

2

811822 7 213
2

byybyy = byy
. 2
11%22 7 12
2

€11%22 T ©12

2b

12°12 ~ P11%22 " P2pc13

one converts equation (C6) to

where

g = 23515 - 3598,
h 2 ay,dyy = ayydyy
3 = ajydyy - ag,dy,
k = dyje), - dyeq,
m = dyie, - dyeqg
2 4 6 8
+ k2r + k4r + k6r + k8r = 0
16 ac
16(af + cg) + 4 h(2 clzdll - cllel)
. 2
+ 4(ey1dynd + agye,,dyy)

16(ab + ce + fg)
+ 4 by (dyh =~ d,00)
+ 4 cll(dzzm - d21k)

+ 8 dll(clzk - bth)

2 .2 _
+d7;(dg, - 4 aybyy - 4 eyhey)
16(bg + ef) + 4 k(b d, = 2 byyd; )
_ - 2

4 byqdyom + 4 byydiien,

16 be
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Reduced form of the characteristic equation. - By substituting into

equations (C9) the definitioms of & , & , ete. from equations (C7), and
then further eliminating aj;; , apy , etc. through equations (4), (8),
(B2) and (13), and (15), the coefficients kg , ky , ..., kg of the
characteristic equation (C8) can eventually be expressed in terms of the
elastic constants, the geometrical parameters e , k , f and 6 , and the
thickness

t .

In reducing the characteristic equation in the manner described above
it will also be desirable to introduce the dimensionless parameter er in
place of r , divide the equation through by E4 in order to non-dimension-
alize the coefficients, and factor out a common factor (t/e)4 .

As a result of these steps, the characteristic equation (C8) becomes

oa 6]+ [eaa 0 * wau 8] Joroo® # [10a 8 + aa8)* Jooo®

where

04

22

24

42

44

60

1t

+ [%60 + ksz(ﬁ)z + k64(§)4](re>6

t)2 t)4 8
+ E‘SO + kSZ(EJ + k84(€) ](re) = 0 (c10)

3 . . . 2
= & & * * - * * * * * * *
4(E) [%Clgl + 2hycfodfy - byefdly + ey dfyd) +oadych, (df) ]

E' G, - a\2 G' . .
16[%?’E'é1f1 + [EJ E clgé]

)3 G . 2, —
— —i4t_ & * - * * * * - * * *
4[%) B 4818 T ety - cfy a5k, * 24§ efpk, - () czzezéj

E'(G)\2] ,2 ~ ~ ~ 2 -
= - * k 4 - * b* - * * & * *
+é J [%flgl bf 4531 - 24§ P oy — (fy) ag,b5, * b11d21h1]

o~
=
X
——
W
B~
Fh>
[
+
=

- 2
* | J— * d* * * *
L P S A P B P B e25]
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: 2
= E.'.}EAA __(__}29;“ ’**_”**
16(}3 = by8y * 45 \&) E 4£,8 + kgp§19%1 2k,b%,971

E' (G
kgo =
_ pk. 4% m + b% (a% )Z'E*
1122 2 29 11 22
= _E.“.:- 2 _G—'- LG E‘—'-E—_GLZ 2 e
ke - l"’us} - b18, 7 E E(E) fl"'s]

=
\

- B 2(CV © -

g = ¢ E} (E) b1%
5132 G G5 e

lG(E\ 3 ble2

2\2(C\2 3o
84 16(13} (E) bye3

with

l

=
n

‘__? Fake b =4 > o
i i i i i i i i it 1l n m w nl

W
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and

11

12

i

i

"

it

I

it

m

1t

1 e)2 o e)2
12(1 = vZ)BZ[Au * 4y, (E) cos™8 + 4"*33(?)

+ 24 £

1 e)2 ej2 o 1
\\7*12(1 = )EZ-[Azz(E] cos 6 - 4A33(-£:) 8in"0 cos § - ?A12

~ A23 f% (cosze - sinze) + A

1 e )2 e)2

12(1 = vz)BZ[AZZ (E) + 4A33(?)
1 k
3(1 * ‘)
1k
6 e
e, 5)

e e

e

1+ E
~ &

k
e e
kt23
dgz = -2 sin ¢
2 sing(1 - cos§)
sinze[lS + 1 £ cosze )

e 2 e

_Z:Lei s:m26 cos §
%f sinze
%(1 + X cosze + 2= s:m46 )
1

Wk
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12 & cos 6

2e sin26 Cos 6 ~ 24 & sin2
23k f 13 f

13 ¢

cosze ~ 24 Ee__fe_ cos 6:]

(C13)



The nature of the roots. - Computations show that in general four of the
roots of equation (Cl0) will be real and four complex. Also, since only even
powers of re appear in equation (Cl0), four of the roots will be the
negatives of the other four. Thus, letting

[

Ry = er, (G =1,2,...,8) (c14)

denote the eight roots, they can be represented in the following form:

R = U+iv

R, = U-1iv

Ry = -U+iv

R, = -U-4iv c1s)
Ry = X

Ry = -X

R, = Y

Rg = -Y

where U, V, X and Y are all real and dimensionless. For a given profile and
given elastic constants, U, V, X and Y are functions of t/e only.

Series expansions for the roots of the characteristic equation. - When
t/e d1s sufficiently small, it is feasible to expand the roots re of equation
(C10) in power series in t/e . The following three kinds of series expansions

are postulated:

. t)2 )4

re = q, + q, [e) + q4[e] + ... (Cc16)
= £ t)3 £y>

re = p; + P3(e) + ps(;] + ... (C17)
o (e)i/2 t t)2

re = [e) [co + ¢ @ + CZ(e] + :l (C18)

Substitution shows that all three forms can indeed satisfy equation (Cl0),
provided that the coefficients have the following values:
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— (both values generally real)

K, +k,q>+k qf+k

6
22 7 %429 82%

1
3
90

04

62%
2
6 kgo + 8 kgdg

4
299 + 8k

6
+ (2k22 + 4k + 6k6 82qo)qoq2

2
42%
2, 4 2

+ (15k60 + 28k80q0)q0q2

2 4 6, 2
(s * Ry4% * Rea% + Kg4% %

2y

5
qg (6kgq + 8kgpay

(both values generally real)

24 42P1 60P1

————-[k + %k, p2 + k 4)

1 2 2 4
[%22P3 * (Zhyy F Akypy + GkggP )PPy

2k2

£< = 4+

ko4

2P1
2 4 4
+ Gy + kgopy F k80p1)p1]

1/4 41k
2 + k22 ‘g(lii)
0 60
(four complex values)

4 8
+ k42c0 + k80c0

co(

k22

4
6050’

2 2 3 4 2 6
c, +k,,c. + 4k42c0cl + 15k60c0c + k_,c

2k22 + 6k

> (C19)

% (C20)

?(CZl)

7

+ 8k80c0c1

1 2470 1 62 o
A
co(2k22 + 6k60c0)

60
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Equations (Cl19) generate two series expansions of the form (C16);
equations (C20) generate two more of the form (Cl7); and equations (C21)
give four of the form (Cl8). Thus series expansions have
been obtained for all eight roots of equation (Cl0). Computations show
that both values of qp and both values of p; are real; thus the two
roots of the form (0169 are real, as are the two roots of the form (Cl7).
These four roots correspond to Rs , Rg , R; and Rg of equations (C15).
The four wvalues of cg are complex, from which it follows that the  four
roots of the form (Cl8) are complex, corresponding to R;» Ry, Rj and Ry
of equations (Cl1l5). It is seen from the serieg expansions that of the
four real roots, two are of the order of (t/e)”, and the other two are
of the order of t/e . The four complex roots are of the order of
(t/e)l/2,

By retaining only the leading term in each of the three series expansions
(C16), (Cl7) and (C18) and (as noted above) identifying Rj, Ry, R3 and Ry
with the roots yielded by equation (C18), Ry and Rg with the roots yielded
by equation (Cl6), and Ry and Rg with the roots yeilded by equation (Cl18),
the following approximate expressions for the U, V, X and Y of equations
(C15) are obtained:

. \
. kyp ()12
u=v- k- e
60
-
x = |2 L (c22)
80
I T [t]
s e
22 )

Relationship of the coefficients A, B, C, D of equations (C4). -
Corresponding to any one of the eight roots of the characteristic equation
(C10), say er; (j = 1,2,...,8) , tnere will be a definite relationship
between the co&fficients A, B, C and D of equations (C4). This relation-
ship 1s obtained by substituting r; for r in equations (C5) and
solving any three of those equation® for three of the coefficients in terms
of the fourth. The last three of those equations will be selected for this
purpose and rewritten as follows with the intention of solving for B, C and
D in terms of A :

2 2 1 . 1 2 )
b22(er) -yt -5 dye (er) -5 dye - (er) ||B/A ¢ p8 - blz(er)
1 . 2 _ 2 2 _ 2 = | .
- E—d21e (er) a;.e ell(er) aj,e elz(er) C/A| = 3 dlle (er)
1 ) 2 _ 2 2 2
-3 d22e (er) aj e elz(er) a,,e e22(er)J D/AL 0

(c23)
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Introducing the definitions of b 9 » C9p » €tc. from equations (4), (8),

(13), (B2) and (15), substituting r = Ty, letting A, , Bj s Ci, Dj denote
the values of A, B, C, D corresponding™to r =r, , gnd introdﬁcing the
notation defined in equation (Cl4), namely R. = ery , equations (C23) can be

rewritten as follows: J

G
— % - — h*%
Ly g Bys By /A, E°l2 " F P2 &y
L L L C./A = L8 ax R (C24)
12 22 23 3744 2 M1 &y
Lig Ly, Laq Dj /Aj ] 0 i
where
E' G
= —— h* - = ¥
Lip = E PRy E ch
e
= - = = 4%
Lip = 259 &
16
= - = = d%
Lig = "28%: X
(C25)

L

11
]
%
'_I
N
o |er
N—
N
1

&
22 E -
)2 [c e'(£)2 = .2
= * |= - = a¥&% _— = *
Los afy [eJ [E e * E (e) 12]Rj
G
= ;

= )12 _
Lyz = ai‘z()

_ - L
B
B, /A. B
3745 3
C./A, = y? (c26)
3% j
D
D, /A, :
| D374 el
where
[ B — 7-1 [ ¢ E' 2 7]
ol ® - — *
Y5 Ly Lip By £ T2 " F P2 By
c 16
- =& g%
Y5 Lo Lyp Dog 2 ® 41 &y (c27)
D
Y5 ] [ D13 Doz Das | 0 |
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For computational purposes it may be desirable to be able to anticipate how
y§ s Yy 2 Y3 depend on t/e . Earlier, in discussing the series expansions for
the roots Rj = ery, it was found that two real roots are of the order of 1,
the other two real Toots are of the order of t/e, and the four complex roots are
of the order of (t/e)1/2. Imagining equations (C24) to be solved_by Cramer's
rule, it becomes evident that: when Rj is of the order of 1, Y? s yg > Y4 are
also of the order of 1; vhen Rj is of the order of t/e , YB is of %he
oxrder of 1, but YC and YP are 0f the order of (t/e)_l; when R: is of the order
of (t/e)1/2, YB Yis of the order of 1, and v$ and y? are of the order of
(t/e)-1/2, ~ 3 . 3

The nature of Y? s yg s Y? . — From equations (C23) the following things

are evident: (a) if r dis replaced by its negative, B/A remains unchanged
vhile C/A and D/A merely change sign; (b) if r dis replaced by its complex
conjugate, B/A, C/A, and D/A are changed to their complex conjugates; (c) if
r 1is real, B/A, C/A, and D/A are real; and (d) if r 1is complex, B/A, C/A,
and D/A are complex. From (a) and (b) and equations (Cl5) it follows that

B_ B c__cC D_ _D
T4 T Y1 Y4 T Y4 T V1
Y3 = ¥y Y3 = 7Yy Y3 = 7Yy
(C28a)
= B C=— = -
Ye = V5 Y6 = V5 Ye = V5
= C-‘-— E—
Yg = ¥y Yg = Y7 Yg = 7Yy
and
B B% cC_ _C* _ D*
Yo 5 7p Y2 1 Ya 1
B _ _B* cC_ cx D _ D*
Y4 = Y3 Y4 T Y3 Y4 T V3 (C28b)

vhere the asterisks denote. "complex conjugate'.

From these deductions and (¢) and (d), it follows that the Y? , Yg , and
Y? can be represented as follows:
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Vo= 2P+ 1QP vs = 2%+ 10° vy =%+ 1Q°
Y123=PB—1QB 1(_,_=PC—iQC Y2=PD-1QD
Yq = p® - 1Q® ‘Yg = -p® 4 1q° yg = -p? + 10
vy = 2%+ 1P vy = 2% - 1" vy = -° - 1¢°
Y? = s® Yg = s° Y]5) = P (c29)
Yg = SB Yg = —SC Y6 = -SD
y? = TB y? = TC Y7 = TD
Y: = TB Yg = —TC Yg = —TD
where PB , Q C,D SB’C’D, and TB’C’D are real numbers.

Complementary solution. ~ At this point eight solutions of the form of
equations (C4) have been derived. The complete complementary solution,
obtained by adding the eight individual solutions, is

8 R.z
1 Z A, exp —1—

j=1 ki

8 B R,z
u, = z ALj‘Yj exp(—%—]
8
w = i [:L]

Substituting for the R.j their expressions from equations (Cl5), and for the

y?, yg, Y? their expressions from equations (C29), one obtains:

e
i

(C30)
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Uz

uy [A1+A)cos-g-+i(A1 A)sin—-]

. [(A + A )cos-!—+1(A - 4) sin——-]

Iz Yz

e e
+ A8e

e e
+ ASe + A6e + A7e

u, = [A1+A)P +i(A—A)Q}cos-—

Vz

+{1(A1 - A2)1>B - (¥ AZ)QB> sin —;]

Uz
+e © [{(AB + A4)PB - 1, - 4)QB} cos %z—
B B Vz
+ {i(A3 - A4)P + (A3 + A4)Q } sin —é—]

Xz Xz Yz Yz

B e e B & e
+ S A5e 6

+ Ae + T A7e +A8e

Uz
_ e C, . _ c vz
v, = e [{Al + AZ)P + 1.(Al AZ)O cos =

+ {i(Al - AZ)PC -+ AZ)QC} sin Yéz-]

Uz
+e © H—(A3 + AA)PC + 1A, - A)QC} cos 1’5—
+ {—i(A3 - AA)PC -4yt AA)QC} sin l’éz—]

X2 = _Xz Y2 _Yz

+s1ae® ~ne & [+18ne® -
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Uz
v, = e € [:<(A1 + AZ)PD + i(Al - AZ)QD} cos —‘%z

Vz

+ {i(Al - A2)PD - (Al + A2)QD} sin —e-]

Uz
+e © [{—(A3 + Aa)PD + i(aq - AA)QD}COS Yz

D D Vz
+ {-:l.(A3 - A4)P - (A3 + A4)Q }s:.n Ta_]

Vz
e

Xz Xz Y2 Xz

e

By expressing the exponential functions in terms of hyperbolic sines and cosines,
these results are converted to the following form, in which each term is easily

identified as being odd or even in 2 3

- nlz |3 Yz vz
ul = cosh . [Al os + A2s1n ]
Uz (= Vz = . Vz
+ sinh < (AB o AASln e]

= = Xz , = Yz

AS = A6 . + A7 osh — + A8 sinh
u, = cosh— A Q)cosv—z+ (AP —AQ)sin
2 A1 e 3

Vz

+ sinh [(A P° + A2Q Yeos —= + (A pB K_lQB)sin ‘;—z:l

¥ sB(f cosh X2 + A, sinh &)
5 e 6 e

+ TB[T cosh Yz + f sinh Iz
7 e 8 e
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Uz V C C, . Vz
vy cosh S [kA P+ A4Q )cos + (A P 1Q Ysin :;1
vzf=C % ] C T Sein V2
+ sinh = [EAlP + A4Q Jecos + (A P A3Q )sin o ]
+SCT: cosh _X_z_'_i sinh Xz
6 e 5 e
1C[%, cosh XZ 4+ X sinh 12 (C31c)
8 e 7 e
v, = cosh HE[(A P~ + A2Q )cos !E-+ (A P lQD)sin %?]

vz = D vz
+ sinh kA.P + A4Q )cos 1;-+ (A P - A3Q )sin :;]

SD(I cosh -)S‘-z— + A sioh 1(5)
6 5 e

D Yz ., Yz I
+ T (AB cosh S + A7 sinh P ) (Cc314d)

where the new arbitrary constants ii s X} s ecoey X} are the following linear
combinations of the original arbitrary constants Ay, Ag s oo, Ag

Tl = At A, tA A
Ay = i(a) - A, + Ay - 4,)
T3EA1+A2—A3-A4
22 = 1(A; - A, - Ay + 4,)
Z:5 = Ag + A

i; = As - A6

T7 = A, + A

Ké = A, - Ag

On physical grounds, the total (particular plus complementary) solutions for
u; and uy should be even functions of 2z , while the total solution for v; and
vy should be odd functlons of =z . The particular solutions, equations (C3),
already satisfy this requirement; therefore the complementary solution, equations
(C31), must also satisfy it. 1In order to eliminate from equations (C31) those _
terms not having the proper parity, it is necessary to set Iﬁ R Ié R ﬁ% , and K
equal to zero.
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Complete solution. - Setting four of the constants equal to zero in the
complementary solution, as described above, and adding to it the particular
solution, equations (C3), there results the follow1ng complete solution in
terms of four arbitrary constants & f4 R 5 R K7 :

u. + A COShEz—cosv~Z+f 31nh——si Yz

1=C10 1 e e 4

+ KS cosh -t—z + K7 cosh Xéz_ (C32a)

= _B = B Uz Vz
= h — _—
u, Czuo + (AlP + A4Q ) cos S oS

= B = B . Uz Vz
- h == -
+ (AAP A1Q ) sin o sin o

= oB B

+ 558 cosh 224 xT

Yz
5 P 4 cosh Y (C32b)

Vz
v, = (AP - lQ ) cosh sin -

+(A1P +AQ)Slnh——coslez-

+2.5% sinh X2 4 2.1 simn
5 e 7

1:’_ (c32¢c)

_ = D _ = D U_Z_ . lg_
= (A4P A.Q ) cosh o sin
D vz

+(AP p

+ A4Q ) sinh 22 cos

b b

+ 280 sinh 22 4 FT

. Yz
5 - p sinh - (c324d)

Evaluation of the arbitrary constants through boundary conditions. - The
unknown constants Ki . Kh » &5 , and Ky are determined from the boundary
conditions, which are: equations (B13) and (B11l) in the case of point
attachments at the ends of the trough lines only (fig. 3(a)); equations (Bl3),
(B5) and (B12) if there are point attachments at the ends of the crest lines
as well (fig. 3(b)); and equations (B13), (B1l') and the second of (Bll) if
there are wide attachments at the ends of the trough lines (fig. 3(d)).
Substitution of equations (C32) into these boundary conditons leads to four
simultaneous equations for X%, , Aﬁ s Ks and K' .
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e

For the case of point attachments

these equations are

where

T T-
Ay
TIPS E R V1 I
B,
Nop Ny Np3 Ny, e
A
N3y N3p N3g Ny e
K
{_N41 Y2 Mas o Naa| |5
= U -
Nll S Ves
m
le Ucs + Vsc
N13 = X
Mg = ¥
_ B - B.
Nyyp = BNy - QN
_ B B
Nyg = QNyy + PN,
B
Ny, = S°X
B
N24 = TY
: > B, ~ C
Ny3 = djgec +dypoqp +eqqfy
TN N B ~ C
Nyp = dyy8s +dyy0y +eqqfy
s -~ B c
Ny, = (dy, + d, 8"+ & ,s%
s ~ B - ¢
N34 = (d11+d21T +ellTY
Ng = =5ydpy = 5y
T B~ C.,- D
Ny = dy907 Foegafy + eyf)
B, €, D
Npo = dyp0p ¥ e1pBy) + 2598

(Continued on next page)

at the ends of the trough lines only

sinh Ub
e

sinh b
e

sinh b
. e

sinh Ib
e

- D
+e198y
+ elz

+ e]_2
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TDY) coth —?
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with

and

o B C D Xb
= a e th ==
Ny = ()8 + &,5°X + &),8°X) coth <
ot B - C. - D, Yb
N44 = (d11T + glzr Y + e,,T Y) coth -
Ny o= mdpif (C34)
\
sr.-% = sin —
~No_
sC = cos —
(c35)
& = coth-U—-bi51an ’
e e
noo_ Ub Yo
ce = cothe cos — )
N
aB = PB{:?:—QBsf;
0‘123 = Pss+QB<(:?:
BS = R - ) - v + o8y
> (C36)
Bg = vt + o) + vl - %8
3? = & - P5) - veePs + P8
53 = ueEPE + PR + vePR - PR J
. \
dll = =-sin ©
d21 z sing(l - cos 8)
. = 2k 1£f 2 16'(t)2 e .2 e b
ejp = sine[e+2ecose]+3c[eJ (1+kcos6+2fsine]>(c37)
T . LE 2 16r)2e 2 & gin?
ey = 2e51necose+3G(eJ(kcose 2fsinecose]
ooz LE 2 lﬁ'_EJZE e o052
e22_2e51n6+3c(e (k+2fc036)
S

70



As is implied in the form of equations (C33), it is usually convenient for

A
computational purposes to regard Gl
0

EiNg

where

A A,
sinh 22 | & ginh B 2 ginh X2 ana
e u e u, e
Pd
A ]
L] H] L4
Y Y Y

b A
sinh — as unknowns, rather than — ,
e u,

For the case of point attachments at the ends of the crest lines and the
trough lines the simultaneous equations arising from the boundary conditions are

B

N11

N1

N3y

N1

N2

Ny2

N3

Na3

Nag

N3

%5

(P cs
SCcos
T cos

N3y -

Ngp -

Ng3 -

Nap,

3

N4

No4

N3,

Nug

[ PIE [P [P IH;T‘

=
[«

- o®R)cos 6 +

+ Q%) cos 6 +

o + s

6 + TD

N4lcos

N42cos

N43cos

- N44cos

N, - N4cos 0
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— -
sinh 2 0

e
sinih 22 0

e

= (c38)

sinh >.L:] 0

e
, Yb —_—
sinh Py N4

po— . -
DM D

DM DM
cs

+ Q sc)

(C39)



Finally, for the case of wide attachments at the ends of the trough lines
they are

_ _— _ _ .
A
S 1 Ub
1 ginm b
N3 M2 N3 Ny u, T e 0
A
4 Ub
Nyy Npp Np3 By, 5 sinh =2 0
i -
- = = = 5 Xb
—_ h —
N3y N3y N33 Ny, ™ simh 2 0
A
7 ..
—_— h =—— ]
Nouo Nao Ny Ny o sin e | N, (c38")
N 4 Lo L
where
’N=31 = °Q - €Q )
?32 = 8 + 8
c r (c3s")
Ny, = 8
= c
N34 =T /

Relationship between shearing displacement and shearing force. - At this
stage the displacement quantities have all been determined in terms of vyp ,
and equations (20) and (C32a) can therefore be used to determine the shearing
forces F needed to maintain the relative shearing displacement Z2ug . The
resulting relationship, taking into account the definitions of cgg and cpp
(eq. (8)), is

e ooy oellh w |us s v
2u0 Gtb 1 b Uy e U2 + V2
Alo Wb |Ué&s - vE
la, e | T2 2
0 U= +v
/
A A
+ =2 sinhb—}gl+ 2 sinhﬂl (c40)
uo e |X u0 e |Y
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APPENDIX D

SPECTAL CASE: £ =0
For the special case £ =0 (fig. 10(b)) junction lines (:) and(:)
coincide and form a line of points of inflectiou of the cross sections.
Along the common junction line the longitudinal displacements must vanish,

and the vertical displacement must also vanish. ‘These conditions can be
met by setting

uz(z) = 0 (o)
and
[vl(z) sin6] sin6 - [vz(z)] cos® = 0 (p2)

The variational form of these equations is

6u2 = 0 (D3)

Sv cosB/sinze (D4)

6v1 2

Il

Incorporation of these conditions into equation (B4) gives the fol-
lowing expression for the first variation of the TPE:

b
= . _F
8 (TPE) = (suo) J (2c00u0 + 2c01u1 b) dz
-b
b 2
+ 2| (-b E—B—-+ c.,u, + c.,u, + l‘d dV2 cosd ) (Su,) dz
11 2 010 1171 2 11 dz |, 2 1
dz sin" 6
-b
+?b[( cos’® |, coso .y 1, 21 cose
L@ T 212 T, 2 T %2’ V27 2% T4z .2
b sin 6 sin" @ sin"@
d2v
" cos"H " cosd " 2
leyy gt 2oy 5t eyy) ——51(V,) dz
sin 6 sin 8 dz

(equation continued on next page)
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du1
+(2b11 iz 6u1)
-b
b
2 dv
cosf " cos”H " cosé " 2
Hdyjug ===+ 200y T+ 20, ot eyy) —7,1(68vy)
sin 6 sin 6 sin¢ -b
(D5)
where

" J J
e = Gt sinze(k + £-cosze) + G (—l + —g-cosze)

11 2 2 2

e k
J

" _ 1 2 ] 2

&y = 3 Gtf sin“e + G k2 (D6)
J

" _ l 3 2 A _2

e, = 3 Gtf sin 6cost + G 5 cosb

k

So far the vanishing of f has not been incorporated into equation (D5).
In order to incorporate this condition into the terms arising from strain
energy of middle-surface shearing, £ may simply be allowed to approach zero
in equations (D6). However, the strain energy of frame bending cannot be
obtained correctly by letting f approach zero in the equations for a,,, a 2
and a,, —equations (Al2), (Al0) and (A8). The reason is that with con-
dition (D2) imposed to prevent vertical displacements of junctiomns (:) and (:),
allowing £ to then approach zero will lead to a clamping (zero rotation)
condition at the vertex formed by junctions (:) and as they meet, rather
than to the condition of free rotation corresponding to the point of inflec-
tion (zero moment) which must exist at this junction. In order to obtain
correctly the zero moment condition existing at the vertex, f must be allowed
to approach infinity, rather than zero, in those terms of equation (D5) which
arise from strain energy of frame bending, namely 211, 239 and a,,. Doing
this, one obtains the following limiting values of 215 3y, and a5, for use
in equation (D5):

D N ~ e 2 2 - e -
aj; *> ZEZS-[AII + A22(k) cos’® - A, E-cose] = ay,
810 7 ~; 3 [A 69)2 6 -La.8] = a (®7)
g e 22/ €08 2 12 % T %12
. 2 -
D e _
a5y > 22,3 4, @ 1 = ay
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o= |

where

2K}

11

b

22

B

12

»
m

2
4(3 +a) % + 12(—%)

2 3 4
768 a2(§) + 144(150% + 20 + 3) &+ 432(302 + DE

3 4
48Ga + 32 + 14407 + DE)

2 e 3 2 et
- 28837 + 20 + Q) - 864 + 1)

Incorporating the above limiting values of 2115 3y, and a5, into

(D8a)

(D8b)

equation (D5) and letting f approach zero in equations (D6) leads to

the following expression for S(TPE):

b
§ (TPE) = (Guo) . J (ZCoou0 + 2c01u1 - %) dz
-b
b dzu 1 dv2 cosf
+ ZJ Pt et Yot Y2 A gy, 2 By 9
b z sin" 6
+ 2 b[(” cos g . o> cosé + a ) - Llyg dul cosb
a1 "~ % 12 .2 T80 V2T 7% Taz T2
b sin '© sin“9 sin“6
2
1 2 -1 - d’v
0 ' 2
= ey S+ 20, 2 r o)) —5 1(sv,) da
sin 6 sin"@ dz
du1 b
+ (b)) =, Sup)
-b
b
2 dv
cosb ~' cos" 0 ~' cos# ~1 2
+[[d11u1 a0t ey Topo ¥ 2o, Tt ey)) — 1(evy) l
sin” 8 sin"© sin” 9 -b
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where

€11

€22

~1

€12

22
k2

J

—5 cosé
k2

|

Gtk sinze + G (—5 +

J

k2

J

1 2

cos ' 8)
e .

(D10)

the & (TPE), equation

(D9), the following conditions are obtained, analogous

to equations (B8) through (Bll):
b
écoouob + 2c0l J Uy dz - 2F = 0 (D11)
-b
2
d"u dv
1 1 cosg 2
by Tt e Y4 T 2 T °
dz sin 8
2 (D12)
du dv
a _ 14  cosb 1! 2 .,
22 V2 72 %1 T 2. Taz 22 2 -
sin" 0 dz
du1
GTE_ = 0 (D13)
z
z==*b
dv
cosf ! 2 _
duy =5+ 289 3 = 0 (b14)
sin" @ z=4*5hb
where
2
! _ T cos‘® ~  cosH ~
89 = 854 t2a, 5t ay,
sin 0 sin™ 9
(D15)
2
' _ ' cos’@ ' cosf . 7!
®2 = e11 . 4 T2 5 tey
sin 0 sin 6
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The above equations: apply to the case of point attachments at the ends
of the trough lines only (fig. 3(a)). For the case in which there are also
point attachments at the ends of the crest lines (fig. 3(b)), equation (D14)
must be replaced by

vz(i b) = O (D16)

This replacement must be made also for the case in which there are wide
attachments at the ends of the trough lines (fig. 3(d)).

Solution of the differential equations.- Equations (D12) have the par-
ticular solution ..

u = - Egl u
1 c11 (4]
(D17)
v = 0

To this must be added the complementary solution, which is the solution
of the homogeneous system obtained by omitting the term cg; ug from the first
of equations (D12). As in the general case, solutions of the homogeneous
system will be sought in the form

~ 1 rz
u, = A e
~ (p18)
~1 rz
v2 = De

Substitution of this assumption into equations (D12) with the ug term
~1 ~ 1 -~

omitted leads to the following conditions on A , D and T :

~2 1 cosf -
bl ~ e A S R A 0
sin™ 6
= (p19)
1 cos® ~ ' o2 =1
B A 49 "€ T D 0
sin' 6
which leads to the following characteristic equation for r :
~2 1 cos® ~
b1 T e “7 41" 3
sin™@
1, cos - | T w2
2% 2 F 22 22
sin’g
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or

[, 71+ [k, + 5 & TR + [k, + & G1F = o (021)
02'e 20 22 e 40 42 e
where
R = er (D22)
. = -8 e 2 *
kogp = —F A +P) a2y
- 2
= &y k 2
20 = (E) cot o
1
s O LE Lk 1% LG, e ¥
k22 = 3% 1+ e) a,y, + E 1+ k) €9 (D23)
T
- = -1lGE khk .2
k40 = “3EE a+ e) cot 9§
1
iy 1 E k, ~ *
kyp = 3% @1 ey
with
ay = 1 [A cos®6 - A, £ cose + A 62)2]
22 12(1_\)2) éZ sin46 11 12 k 22 'k
(D24)
- 1 G' cosze + E
e = ST d
22 3 E sin46

_Equation (D21) will have four roots for R, two of them being the
negatives of the other two. For any geometries of interest the roots will

all be real. Denoted by R RQ’ R3 and R4, they can be represented as
R, = X
R2 = -X
(D25)
R3 = Y
R4 =-Y

where X and Y are real members.
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The following series

X

Y =

where

expansions for X and Y
-~ ~ t2 ~ t4
9+t 9, ) +q, Q) +eeo

- 3 - 5
t t t
Ppe TPy Q) *tpg Q) oo

95 = + \,—kzO/kAO (real)

2, 4
I kyp Gg *+ Ky 9y
2 - 3
2 g kpg * 4 9y deyg
L R I
o - 2092 %Y a9, * 6 K40 99 92 4 Kz Y Y
4 oy 3
2 qq kyg + 4 qy” Ky
p; = * 02/k20 (real)
3
-~ k22 p1 %40 Pl
'3 2 k
20
ko P2+ 2K, pypat bk, pipst k., p
b = 20 P3 22 P1P3 40 P1-P3 * Kyp °
5 T
2 ko Py

Corresponding to any
~1

D which can be obtained

~1 ~% j ~ 1 ~1
tions (D19). Letting Aj and Dj denote the values of A and D associated
with R = Rj, this relationship can be written as
~ 1
D, ~
= = ¥, (D29)
A, J
J
where
1
v =[x e 13z E k
e L = A+P-FR G A+D 1 tane (D30)
]

root R = Rj there is a relationshlp between

R /e

by substituting r =r
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are readily obtained:

(D26)

027)

(D28)

A and

into the first of equa-



Taking into account equations (D25), it follows that

o T _tl.e X E. Lk
Y| = -, = [i 1+ 37 ¢ @+ e)] tand
(D31)
~ ]
NV 2 § e _Y E k
Yy = 74‘[;{(1*18 3 & U+ tano

Summation of the four solutions of the form of equations (D18) leads

to the following complete complementary solution:

~1 x% ~1 "X'z ~1 Y':‘ ~1 —Y&
u, = Al e + A2 e + A3 e + A4 e
i ) N ; (D32)
AT NS N <R TI <
Vo = vy |4 e - Ay e + V(A5 e - A, e

Expressing the exponantial functions in terms of hyperbolic functioms,
discarding the terms which do not have the proper symmetry (in the case of “2)
or antisymmetry {(in the case of v2) with respect to 2z, and adding the parti-
cular solution, equations (D17), one obtains the following complete solution

for the displacements ul(z) and vz(z):

c
u = -9 4+ % cosh X2 4T cosh <2
¢ 0 1 e 3 e
(D33)
= o x : Xz . ° 7 Yz
Vo T Y A1 sinh P + Y3 A3 sinh =

where ‘Kl and Ké are new arbitrary constants, to be determined from the
boundary conditions, and - c01/c11 equals (1 + %) » 1in accordance with

equations (8).

Evaluation of the arbitrary constants.- For the case of polnt attachments

at the ends of the trough lines only (fig. 3(a)), the boundary conditiomns are
equations (D13) and (Dl4). Substitution of (D33) into those equations

leads to the following equations defining Kl and X3 :
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— BRI -
’ » 1, X
11 12 u, >

0
K ~
3 Yb
Pa1 Py2 . sinh T
_ 0
where
Pll = X
Plo = ¥
~ ok
Py, = - a - v, X 3 cot8) cotd
1 ¢ 2g 2
t G -~ - e
+ 3 (e) c N1 X CE + cos 0)
- - vk
Pog = [- ¢ - Y3 Y3 cot®) cotd
1 2 G' 2
t N -
*t3 CE) R (k + cos“0)
cotd
P = ————
2 e
1+ "

For the other two kinds of end attachment (figs. 3(b) and 3(d)), equation (D16)
This results in

replaces (D14) as a boundary condition.

which makes the particular solution (D17)
that the corrugation sheet is in a state of
by continuous attachment.
the remainder of this appendix will pertain
at the ends of the trough lines (fig. 3(a)).

81

M o n
0
= (D34)
|
csc4e] coth %?
(D35)
CSCAB] coth %?
(D35)

(D36)

also the complete solution and implies
uniform shear like that obtainable

This case therefore requires no further anmalysis, and

only to the case of point attachments



Retationship between F and Uy With ul(z) now known in terms of Ugs

equation (D11) yields the following relationship between shearing force F

and relative shearing displacement 2u0 of the sides of the corrugation:

F_ Gtb =
e, - e ¥ (D37)
0
where
- A > A, >
v = 1-—2— L simn {3) 2 - 3 osimn By & (D38)
1+-§- Yo Y €

As in the general case, relative shear stiffnesses and an effective shear
modulus can be defined. Equations (37) through (46) of the body of the
paper still apply with f set equal to zero and ¢ replaced by ¢ .

Stresses.— The longitudinal normal stresses are

o= E 5 (D39)

at junction (@ and zero at the other junctions. Eliminating Uy through
equation (D33) gives

. - A, . z
X siph 22 4+ -2 ¢ ginh YZZ- (D40)

E u, 0 € Y

@e

£ |,

The middle-surface shearlng stresses, obtained with the ald of table 2
and equations (D33), are given in dimensionless form as follows:

e A > A

. -
GOl - -1 = + 1 cosh %f-+ —é-cosh %f— (D41a)
Yo 1+~ Y Yo
e
- Ny > A, . . 3

12 1 1~ = e Xz 3 e Yz

- = - + —= (y, X cotd = ) cosh =+ — (y, Y coté - ) cosh —

Gu0 1 +.§ U, 1 k e Uy 3 k e

(D41b)

where the subscripts 0l and 12 refer to plate elements 0l and 12 re-
spectively.
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From the rates of twist in table 3 and the displacement equations (D33)
the following equations are obtained for the extreme-~fiber shearing stresses
due to torsion, in plate elements 01 and 12 ryespectively:

The€
(')1 - Ecosg W(z)
G Ug sin'6
(D42)
1
T,,8
e Tl (O
G u sin™ 6
\ 0
where -
- N Xz
A > ¥y, X cosh —
W(z) = (—-1- sinh -&) —-]'—..—e—
u e
0 sinh 22
e . (D43)
-~ C Yz
A 1. Y Y cosh —
+ et By 2 te
0 sinh h4:]
e

The frame bending moments and associated extreme-fiber bending stresses
will be zero at junctions @ and @ because in this special case these junctions
meet to form a line of inflection points. The frame bending moments at Jjunctions
@ and @ can be obtained by first introducing condition (D2) into table Al,

1

writing equations (Al) for MOl and M 29 and then letting f -+ = (not zero),
\ t
as discussed earlier. The assoclated extreme-fiber stresses o@ and ¢

are
obtained by multiplying the bending moments by 6/t2, In this way the following
results are obtained:

. v
Qe . o L 12csd .50+0HD
0 1-v B sin”6 0
(D44)
D 6t 1 e e 2 V2
Eue = - 5 = 3 31 + ) T cosd + (3 +a) (P ](u—')
0 1-v B sin"® 0]

\ ]
in which, o@ and b are positive for compression in the upper fibers,
tension in the lower fibers.



APPENDIX E

SPECIAL CASE: e = 0

For the special case e = 0 (fig. 10(c)) the plate elements at the troughs
are of zero width, with the result that the two adjacent sloping plate elements
meet to form a vertex along the trough line.

This special case can be obtained from the general case by first imposing
along junction (:) the same displacement conditions as exist along junction (:),
namely

u; (2) = u, " (E1)
v (2) = 0 (E2)

The condition
e >0 (E3)

is then imposed to simulate the condition of clamping (zero rotation) along the
trough lines; or the condition

e > (E4)
in order to simulate a hinged attachment (free rotation) along the trough lines.

Applying the above procedure to equation (B4), the latter becomes

b
’
- . _F s
S(TPE) = (6u0) J ( 5 + 2c00 uy + 2c12u2) dz
-b
b d2u2 1 dv2
T2 I (bop T7Z T e1p Yo ¥ Cpp Uy g g Ty ) (Suy) d2
-b
b du d%v
+ 2 Ga,, v, - l—d —2_ e ——IEO(GV ) dz
22 2 2 22 dz 22 dz 2
-b
du2 b dv2 b
+ EZ b22 e (Guz)] I + |:(d22 U,y + 2 €59 E‘) (6\72)] l (E5)
. _b _b
where
Cnn = Gt/k (E6)

00
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% E_\-

and a, has the following two different values, depending on whether the
trough™ lines are prevented from rotating (condition (E3)) or free to rotate
(condition (E4)):

2 3
_ E ¢ 3|1 + 6 l;—+ 12(%) cosb + 8(%) cos29
3, = T GE) ) S-E (E7a)
f
for rotation along trough lines prevented;
2
_ E t3%(1+2%cose)
20 = 7055 © (E7b)
a7y T
£

for freedom of rotation along the trough lines.

From the vanishing of 6(TPE), equatiod (E5), the following equations

governing u, and v, are obtained:

b
_2F+4000u0b+2‘:12[ uzdz = 0 (E8)
-b
d2u dv
b + c u, + ¢ u, + 5 2 = 0
22 dz2 12 70 22 "2 2 722 dz
) (E9)
- 1, T,
822 V2 7 7 %22 Az €22 dz2
) - (E10)
dz =0
z =+ Db
dv2
d22 u2+2e22'az— = 0 (E11)
z =xb

The above development is for the case of attachments at the ends of the trough
lines only (figs. 3(a) and 3(d)). With e = 0 the presence of additional
attachments at the ends of the crest lines (fig. 3(b)) is tantamount to contin~
uous attachment, within the framework of the present type of analysis. (A
similar phenomenon was observed in appendix D for the case £ = 0.)

85



Solution of the differential equations.~ Equations

solution

rz
u2 = Ae
v2 = D erz

Substitution of these expressions into, equations , (E9)

leads to the following conditions on A, D and r:

»\2 1 ~

byy T7 =y —gdynt
1 " = 2
“gdy T 890 " €22 T

- 1
Pyy T7- Sy ]
l ~ —_—
=7 99 892 ~
or
> (L . fc
koo G+ [kpo YRy G [ R 4
where

86

(E9) have the particular

0

|4
o

[w 5%
o

al
R = 0

(E12)

(E13)

with the u term omitted

(E14)

(E15)

(E16)

(E17)



and

_ 1E' £, —* !
kyy = 5E @+ ay

E' G £, f 2
EE(2+k)—£sine

B~
o
Sl=

= - L
42 18

k
£

G' £
7 Q+p@+2

=
=t

with 2 3

166G k
+ IFE (l+27f-)(1+2

cosze)

k k. k 2
1+ 6 f + lZ(f) cos9 + 8(f) cos 8

2(1-v3) (2 + 3 %)
for the case in which the trough lines are clamped, or

—_ %
Y

k k 2
§{1 + 2 s cosf)

2(1-v2) (L + 2 %)

m

for the case in which the trough lines are free to rotate.
Equation (E16) will have four real roots, Rl, R

]
sentable in the following form: 2

1 2 3

R, =X, R,=-X, R, =Y, R, =-%Y

‘\\\

%-coszﬂ) (E18)

_/

(E19a)

(E19b)

and R4, repre-

(E20)

where X and Y are real numbers. Series expansions may be used, if desired,

A

for the evaluation of X and ¥. These expansions are

2 y
X = g 4+ g (& o (&
X = 9 + q2(k) + q4(k) + e
3 5
T =p L4p. ) 4. D + ...
1k 3%k 5%
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~

where aO’ Qgs =ser and Pys Pgs evee are defined by equations (D27) and
(D28) with all tildes (~) replaced by circumflex accents (-).

Letting A, and D, denote the values of A and D asssciated with the

root R = Rj’ the relationship between them can be obtained from the first of

equations (E14), It is

D, ~
=+ = v, (E22)
A J
J
where
~ _ k l_ E £ 1
yj = [jR 1+ 2 f) 3 J G 2 + {] <ind (E23)
J
Taking into account equations (E20), it follows that
- S I § ky 12 E F AN R
Yi ST Yy < [}2(1+2 ) - % G(2+k)]sine
(E24)
: co_fL ky Lo B, £ 1
Y3 T T _L}(l-'-zf) 6YG(2+k)]sine

Summing the four solutions of the form of equations (E13), adding the
particular solution, equations (E12), and taking into account the fact that

u, must be even in z, u, odd in 2z, one arrives at the following complete

solution of the differential equations (E9):

- ~

c
12 Xz * Yz
u, = - E;;—uo + A1 cosh 1:-+ A3 cosh-i—
(E25)
= A * le + * h
Vo T oY) Ay sin m Y3 3 sin k

* *
where A1 R A3 are arbitrary constants to be evaluated from the boundary
conditions, and -~ c12/c22 equals (1 + 2 %)_1 , 1n accordance with equations

(8).

Evaluation of the arbitrary constants.- The boundary conditions (E10) and

* *
(E11) 1lead to the following equations defining Al and A3
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(E27)

- N — * A-j — 7
1 Xb
Q, Q5 ’Egsmhk 0
L h = (E26)
Q Q —331nh—— Q
21 22 uy k 2
—~— _JL_ - - -
where
Q, = X
Qp = ¥
~ o f 21:2(;"“ k 2 Xb
_ _ . I 2 £ (L. L K AD
Q21 = & 2 sing + Y1 X * sin“e) + 3 (k) g Y1 X (1+2 7 cos ei]coth *
£ 2 &l g K ¥
c |2 eme+l Y E a2y + 2 & & 5% K o2 3
Q22 = {} 2 sing + Yg Y ™ sin“9) + 3 (k) c Y3 Y (1 + 2 F cos e{}coth m
2 sinb
% 1+2%
£

Relationship between F and .— With u2(z) now known in terms of u

) 0’
equation (E8) yields the following relatior hip between the shearing force F and
the relative shearing displacement 2uO :

_ e )
_r = ¥ (E28)

where

(E29)

The ratio Q of the shearing stiffness (E28) to that of the same corrugation
with continuous end attachment producing uniform middle-surface shear strain through-
out the sheet is given by

) tf: (E30)

={eh

1
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On the other hand, the ratio @' of the shearing stiffness (E28) to that of a
uniformly sheared flat plate of thickness t, length 2b, and width P 1is

) @ (E31)

&+

Q' = (cos® + -%

Defining an effective shear modulus Geff as the ratio of the average shear stress

F/2bt to the average shear strain 2uo/p, it is easily seen that

Geff = GQ' (E32)

Stresses.~ The longitudinal normal stresses along junction (:), obtained
from the strains du2/dz, are given in dimensionless form by

* *
AT - AL ~
@ . 1% sinhz(l-f— + ——Ysinh%— (E33)
E'u Y Yo

0

The dimensionless middle-surface shearing stresses, as obtained from table
2 and equations (E25), are given by

Typ K - v, (2) -1
G uO u0
(E34)
T k u, (z) > >
23 ° _ k%2 fo sk Xz ~oL ok Yz
c ug 2 3 ™ + sine-(y1 X A1 cosh m + Y3 Y A3 cosh k]

From the rates of twist in table 3 and equations (E25) the following
equations are obtained for the extreme-fiber shearing stresses 112 ’ Té3 due

to twisting of the plate elements 12 and 23 respectively:

\
T k
12 - _ _1‘:_"',]'(2)
1 k
G u0
(E35)
'
Too k
23 = 2 = cosb ﬁ(z)
G'uO
where
W - v x AT Xz v Ak ¥z
W(z) = Y1 X Al cosh * + Y3 Y A3 cosh ” (E36)
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The frame bending moments at junctions @ and @ can be obtained by
introducing condition (E2) into table Al, then writing equations (Al) for
M12 and M23, and then letting e » 0 if the trough lines are restrained against
rotation or e » «» 1f they are free to rotate. The resulting bending moments are

then multiplied by 6/1:2 to obtain the associated extreme-fiber bending stresses

ﬁ) and D The results are as follows:

@_k_ - 3 t {1 = 2 cos® _ 1:] VZ(Z)

) 1-v2k 24 3% Yo
2 (E37)
1 - ek 9
0®k ~ 3t 3 6(f) cos@ Kk { vz(z)
Eu - 2 f k + 2 3 cos u
0 l-v 2+ 3 T 0

when the trough lines are restrained against rotating; and

Eu
0 (E38)
' K
bk ) 3t 1+ 2§ cosé vz(z)
Ev  1-2f142k g

when the trough lines are free to rotate.
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(b) Plan view

Figure 1. - Configuration of trapezoidally corrugated plate
considered in the present analysis.
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(a) Complete freedom of rotation

(b) Clamping

Figure 2. - Types of external restraint against rotation considered
along the trough lines.
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(a) Point attachment at the ends of the trough lines.

(b) Point attachment at the ends of the trough lines and crest lines.

. J

(c) Wide attachment at ends of trough lines only.

(d) Idealization of (c) used in the analysis: Point attachments at
the ends of the trough lines, and point attachments permitting
longitudinal sliding at the junctions of the trough plate elements
and the inclined plate elements.

Figure 3. - Types of attachment considered at the ends of the corrugationms.

95



(a) Diagram of middle
surface of cross
section.

(b) Assumption regarding
longitudinal displace-
ments.

Component displacement
modes for displacements
in the plane of the
cross section.

Figure 4. - Diagrammatic representation of assumptions regarding displacements.
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L6

Figure 5. - Photograph showing flexural deformations during shearing
of a single corrugation (from ref. 1),
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Figure 6. - Sign convention for joint rotations assumed in
the analysis for strain energy of frame bending.
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Figure 7. - End moments Mj and Mg due to deflection A or rotation 9

of the right end of a uniform beam with left end either
clamped or hinged. (D = flexural stiffness, o = 0 if left
end is hinged, o =1 1if left end is clamped)
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Figure 8. - Notation for end moments in the frame elements.
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e
Figure 9. - Successive transformations of the force system at the end z = b

into statically equivalent forms.
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General case

(a)

Special case f =0

(®)

Special case e

()

Figure 10. - General and special cross—-sectional geometries

considered in the analyses.
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2

(a) h/p
Figure 11l.- Relative shear stiffness for the case of point attachments at

the ends of the trough lines.
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(b) h/p

Figure 11.- Concluded.
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(a) h/p=.2
Figure 12.- Relative shear stiffness for the case of point attachments at

the ends of both the trough lines and the crest lines.
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(a) h/p=.2
Figure 13.- Relative shear stiffness for the case of wide attachments at

the ends of the trough lines,
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(b) h/p=.4
Figure 13.- Concluded.
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Figure l4.- Re~-plot of the data of figure 1ll.
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Figure l4.- Concluded.
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Figure 15.- Re-plot of the data of figure 12.
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Figure 15.~ Concluded.
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Figure 16.- Re-plot of the data of figure 13.
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